|
--- |
|
license: mit |
|
base_model: gogamza/kobart-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: KoBART_base_v2-trial2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# KoBART_base_v2-trial2 |
|
|
|
This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co./gogamza/kobart-base-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1820 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 20 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.3889 | 0.11 | 50 | 0.5425 | |
|
| 0.5339 | 0.22 | 100 | 0.4328 | |
|
| 0.4609 | 0.32 | 150 | 0.4180 | |
|
| 0.4631 | 0.43 | 200 | 0.4167 | |
|
| 0.4065 | 0.54 | 250 | 0.3775 | |
|
| 0.3898 | 0.65 | 300 | 0.3539 | |
|
| 0.3637 | 0.76 | 350 | 0.3389 | |
|
| 0.3347 | 0.87 | 400 | 0.3275 | |
|
| 0.3428 | 0.97 | 450 | 0.3087 | |
|
| 0.2871 | 1.08 | 500 | 0.3189 | |
|
| 0.2843 | 1.19 | 550 | 0.3016 | |
|
| 0.2685 | 1.3 | 600 | 0.2954 | |
|
| 0.2603 | 1.41 | 650 | 0.2860 | |
|
| 0.2636 | 1.52 | 700 | 0.2804 | |
|
| 0.2586 | 1.62 | 750 | 0.2821 | |
|
| 0.2485 | 1.73 | 800 | 0.2674 | |
|
| 0.2483 | 1.84 | 850 | 0.2662 | |
|
| 0.2322 | 1.95 | 900 | 0.2525 | |
|
| 0.2052 | 2.06 | 950 | 0.2634 | |
|
| 0.1838 | 2.16 | 1000 | 0.2472 | |
|
| 0.1859 | 2.27 | 1050 | 0.2432 | |
|
| 0.1887 | 2.38 | 1100 | 0.2392 | |
|
| 0.1756 | 2.49 | 1150 | 0.2314 | |
|
| 0.1697 | 2.6 | 1200 | 0.2332 | |
|
| 0.1741 | 2.71 | 1250 | 0.2257 | |
|
| 0.1665 | 2.81 | 1300 | 0.2204 | |
|
| 0.1655 | 2.92 | 1350 | 0.2097 | |
|
| 0.1539 | 3.03 | 1400 | 0.2141 | |
|
| 0.126 | 3.14 | 1450 | 0.2129 | |
|
| 0.1241 | 3.25 | 1500 | 0.2068 | |
|
| 0.1266 | 3.35 | 1550 | 0.1999 | |
|
| 0.1161 | 3.46 | 1600 | 0.1996 | |
|
| 0.1183 | 3.57 | 1650 | 0.1943 | |
|
| 0.1123 | 3.68 | 1700 | 0.1914 | |
|
| 0.1096 | 3.79 | 1750 | 0.1881 | |
|
| 0.1089 | 3.9 | 1800 | 0.1835 | |
|
| 0.1096 | 4.0 | 1850 | 0.1803 | |
|
| 0.0857 | 4.11 | 1900 | 0.1873 | |
|
| 0.0833 | 4.22 | 1950 | 0.1857 | |
|
| 0.0791 | 4.33 | 2000 | 0.1871 | |
|
| 0.0825 | 4.44 | 2050 | 0.1852 | |
|
| 0.0813 | 4.55 | 2100 | 0.1834 | |
|
| 0.0806 | 4.65 | 2150 | 0.1830 | |
|
| 0.0805 | 4.76 | 2200 | 0.1822 | |
|
| 0.0786 | 4.87 | 2250 | 0.1820 | |
|
| 0.0775 | 4.98 | 2300 | 0.1820 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|