Lloro SQL

Lloro-7b Logo

Lloro SQL, developed by Semantix Research Labs, is a language Model that was trained to effectively transform Portuguese queries into SQL Code. It is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct, that was trained on GretelAI public datasets. The fine-tuning process was performed using the QLORA metodology on a GPU A100 with 40 GB of RAM.

Model description

Model type: A 7B parameter fine-tuned on GretelAI public datasets.

Language(s) (NLP): Primarily Portuguese, but the model is capable to understand English as well

Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct

What is Lloro's intended use(s)?

Lloro is built for Text2SQL in Portuguese contexts .

Input : Text

Output : Text (Code)

Usage

Using an OpenAI compatible inference server (like vLLM)

from openai import OpenAI
client = OpenAI(
    api_key="EMPTY",
    base_url="http://localhost:8000/v1",
)
def generate_responses(instruction, client=client):
    
    chat_response = client.chat.completions.create(
    model=<model>,
    messages=[
        {"role": "system", "content": "Você escreve a instrução SQL que responde às perguntas feitas. Você NÃO FORNECE NENHUM COMENTÁRIO OU EXPLICAÇÃO sobre o que o código faz, apenas a instrução SQL terminando em ponto e vírgula. Você utiliza todos os comandos disponíveis na especificação SQL, como: [SELECT, WHERE, ORDER, LIMIT, CAST, AS, JOIN]."},
        {"role": "user", "content": instruction},
    ]
)
    
    return chat_response.choices[0].message.content

output = generate_responses(user_prompt)

Params

Training Parameters

Params Training Data Examples Tokens LR
8B GretelAI public datasets + Synthetic Data 102970 18.654.222 2e-4

Model Sources

GretelAI: https://huggingface.co./datasets/gretelai/synthetic_text_to_sql

Performance

Test Dataset

Model LLM as Judge Code Bleu Score Rouge-L CodeBert- Precision CodeBert-Recall CodeBert-F1 CodeBert-F3
Llama 3 8B 65.48% 0.4583 0.6361 0.8815 0.8871 0.8835 0.8862
Lloro - SQL 71.33% 0.6512 0.7965 0.9458 0.9469 0.9459 0.9466
GPT - 3.5 Turbo 67.52% 0.6232 0.9967 0.9151 0.9152 0.9142 0.9175

Database Benchmark

Model Score
Llama 3 - Base 35.55%
Lloro - SQL 49.48%
GPT - 3.5 Turbo 46.15%

Translated BIRD Benchmark - https://bird-bench.github.io/

Model Score
Llama 3 - Base 33.87%
Lloro - SQL 47.14%
GPT - 3.5 Turbo 42.14%

Training Infos

The following hyperparameters were used during training:

Parameter Value
learning_rate 2e-4
weight_decay 0.001
train_batch_size 16
eval_batch_size 8
seed 42
optimizer Adam - adamw_8bit
lr_scheduler_type cosine
num_epochs 4.0

QLoRA hyperparameters

The following parameters related with the Quantized Low-Rank Adaptation and Quantization were used during training:

Parameter Value
lora_r 64
lora_alpha 128
lora_dropout 0

Experiments

Model Epochs Overfitting Final Epochs Training Hours CO2 Emission (Kg)
Llama 3 8B Instruct 5 Yes 4 10.16 1.45

Framework versions

Library Version
accelerate 0.21.0
bitsandbytes 0.42.0
Datasets 2.14.3
peft 0.4.0
Pytorch 2.0.1
safetensors 0.4.1
scikit-image 0.22.0
scikit-learn 1.3.2
Tokenizers 0.14.1
Transformers 4.37.2
trl 0.4.7
Downloads last month
37
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for semantixai/Lloro-SQL

Finetuned
(529)
this model