OrpoGemma-2-9B-TR
OrpoGemma-2-9B-TR is a Turkish fine-tuned version of google/gemma-2-9b-it. It is trained using the ORPO Trainer on a subset of 1500 rows from the dataset selimc/orpo-dpo-mix-TR-20k.
Training Information
Base Model: google/gemma-2-9b-it
Fine-Tuning Technique: ORPO
Training Data: 1500 rows from selimc/orpo-dpo-mix-TR-20k
Training Time: 2.5 hours on NVIDIA H100
QLoRA Configurations:
lora_r
: 16lora_alpha
: 32lora_dropout
: 0.05
ORPO Training Parameters
lr
: 2e-6epochs
: 3per_device_train_batch_size
: 8gradient_accumulation_steps
: 4
π Training Curves
OpenLLMTurkishLeaderboard_v0.2 Results
Dataset | Score |
---|---|
MMLU_TR_V0.2 | 53.0% |
Truthful_QA_TR_V0.2 | 54.3% |
ARC_TR_V0.2 | 52.4% |
HellaSwag_TR_V0.2 | 52.0% |
GSM8K_TR_V0.2 | 64.8% |
Winogrande_TR_V0.2 | 58.9% |
Average | 55.9% |
Thanks to the WiroAI team for evaluating my model. Evaluations were done without any inference engine.
Model Capabilities
- Produces fluent, coherent, and contextually appropriate text in Turkish.
- Delivers detailed and informative responses to a wide range of instructions and question types.
- May still produce incorrect or nonsensical outputs, user verification is recommended.
How to Use
from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model_id = "selimc/OrpoGemma-2-9B-TR"
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16 ,'quantization_config': bnb_config},
tokenizer=tokenizer,
device_map="auto"
)
messages = [
{"role": "user", "content": "GΓΆkyΓΌzΓΌ neden mavi?"},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(
prompt,
max_new_tokens=512,
do_sample=True,
eos_token_id=[pipe.tokenizer.convert_tokens_to_ids("<end_of_turn>"), pipe.tokenizer.eos_token_id],
temperature=0.67,
)
generated_text = outputs[0]['generated_text']
response = generated_text[len(prompt):]
print(response)
Example 1
messages = [
{"role": "user", "content": """Bir web sayfasΔ±ndan tΓΌm URLβleri Γ§eken bir Python fonksiyonu yazΔ±n ve nasΔ±l Γ§alΔ±ΕtΔ±ΔΔ±nΔ± aΓ§Δ±klayΔ±n."""},
]
Bir web sayfasΔ±ndan tΓΌm URLβleri Γ§eken bir Python fonksiyonu yazalΔ±m ve nasΔ±l Γ§alΔ±ΕtΔ±ΔΔ±nΔ± aΓ§Δ±klayalΔ±m.
```python
import requests
def get_urls_from_page(url):
"""
Bir web sayfasΔ±ndan tΓΌm URL'leri Γ§eker.
Args:
url (str): Web sayfasΔ±nΔ±n URL'i.
Returns:
list: Web sayfasΔ±ndaki tΓΌm URL'ler.
"""
response = requests.get(url)
response.raise_for_status()
urls = []
for link in response.html.find_all('a', href=True):
urls.append(link['href'])
return urls
# Γrnek kullanΔ±m
web_page_url = 'https://www.example.com/'
all_urls = get_urls_from_page(web_page_url)
print(f"Bu web sayfasΔ±ndaki {len(all_urls)} URL bulunmaktadΔ±r:\n{all_urls}")
```
**Fonksiyonun nasΔ±l Γ§alΔ±ΕtΔ±ΔΔ±:**
1. **`requests` kΓΌtΓΌphanesini iΓ§er:** Bu kΓΌtΓΌphane web sayfalarΔ±na eriΕmek iΓ§in kullanΔ±lΔ±r.
2. **`get_urls_from_page` fonksiyonunu tanΔ±mla:**
* Bu fonksiyon, bir web sayfasΔ±nΔ±n URL'ini alΔ±r.
* `requests.get()` kullanarak web sayfasΔ±na eriΕir ve `response.raise_for_status()` kullanarak HTTP durum kodunun 200-399 aralΔ±ΔΔ±nda olup olmadΔ±ΔΔ±nΔ± kontrol eder.
* `response.html` içine bir HTML belgesini saklar.
* `response.html.find_all('a', href=True)` kullanarak, `href` atributuna sahip tΓΌm `<a>` etiketlerini bulur.
* `urls` listesine URL'leri ekler.
* `urls` listesini dΓΆndΓΌrΓΌr.
3. **Γrnek kullanΔ±m:**
* `web_page_url` deΔiΕkenine bir web sayfasΔ±nΔ±n URL'ini atar.
* `get_urls_from_page` fonksiyonunu kullanarak web sayfasΔ±ndan tΓΌm URL'leri Γ§eker.
* `all_urls` listesini `print()` fonksiyonu kullanarak ekrana yazdΔ±r
Example 2
messages = [
{
"role": "system",
"content":
"""
Sen bir türkçe bilmece ustasısın. Gârevin:
- Sorulan bilmecelere mantΔ±klΔ± ve doΔru cevaplar vermek
- Bilmecenin çâzümünü adım adım açıklamak
"""
},
{
"role": "user",
"content":
"""
KanadΔ± var, kuΕ deΔil.
Suda yΓΌzer, gemi deΔil.
KuyruΔu var, kedi deΔil.
Bil bakalΔ±m, bu nedir?
"""
},
]
KanadΔ± var, kuΕ deΔil, suda yΓΌzer, gemi deΔil, kuyruΔu var, kedi deΔil... Bu bir **balΔ±k**! π
Citation
@misc{orpogemma2-9b-tr,
author = {Selim ΓavaΕ},
title = {OrpoGemma-2-9B-TR: Turkish Fine-tuned Gemma Model},
year = {2024},
url = {https://huggingface.co./selimc/OrpoGemma-2-9B-TR}
}
- Downloads last month
- 2,706
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for selimc/OrpoGemma-2-9B-TR
Dataset used to train selimc/OrpoGemma-2-9B-TR
Evaluation results
- 5-shot on MMLU_TR_V0.2self-reported0.530
- 0-shot on Truthful_QA_V0.2self-reported0.543
- 25-shot on ARC_TR_V0.2self-reported0.524
- 10-shot on HellaSwag_TR_V0.2self-reported0.520
- 5-shot on GSM8K_TR_V0.2self-reported0.648
- 5-shot on Winogrande_TR_V0.2self-reported0.589