Edit model card

Polish-SPLADE

This is a Polish version of SPLADE++ (EnsembleDistil) model described in the paper From distillation to hard negative sampling: Making sparse neural ir models more effective. Sparse Lexical and Expansion (SPLADE) is a family of modern term-based retrieval methods employing Transformer language models. In this approach, the masked language modeling (MLM) head is optimized to generate a vocabulary-sized weight vector adapted for text retrieval. SPLADE is a highly effective sparse retrieval ranking algorithm, achieving results better than classic methods such as BM25 and comparable to high-quality dense encoders.

This model was fine-tuned from polish-distilroberta checkpoint on the Polish translation of the MS MARCO dataset. We used the default training hyperparameters from the official SPLADE repository.

Below is a example of using SPLADE without any additional dependencies other than Huggingface Transformers:

import torch, math
import numpy as np
from transformers import AutoTokenizer, AutoModelForMaskedLM

model_name = "sdadas/polish-splade"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForMaskedLM.from_pretrained(model_name)
vocab = {v: k for k, v in tokenizer.get_vocab().items()}

def encode_splade(text: str):
    input = tokenizer([text], padding="longest", truncation=True, return_tensors="pt", max_length=512)
    output = model(**input)
    logits, attention_mask = output["logits"].detach(), input["attention_mask"].detach()
    attention_mask = attention_mask.unsqueeze(-1)
    vector = torch.max(torch.log(torch.add(torch.relu(logits), 1)) * attention_mask, dim=1)
    vector = vector[0].detach().squeeze()
    idx = np.nonzero(vector.cpu().numpy())[0]
    vector = vector[idx]
    return {vocab[k]: float(v) for k, v in zip(list(idx), list(vector))}

def cos_sim(vec1, vec2):
    intersection = set(vec1.keys()) & set(vec2.keys())
    numerator = sum([vec1[x] * vec2[x] for x in intersection])
    sum1 = sum([vec1[x] ** 2 for x in list(vec1.keys())])
    sum2 = sum([vec2[x] ** 2 for x in list(vec2.keys())])
    denominator = math.sqrt(sum1) * math.sqrt(sum2)
    return (numerator / denominator) if denominator else 0.0

question = encode_splade("Jak dożyć 100 lat?")
answer = encode_splade("Trzeba zdrowo się odżywiać i uprawiać sport.")
print(cos_sim(question, answer))

Example of use with the PIRB library:

from search import SpladeEncoder
from sentence_transformers.util import cos_sim

config = {"name": "sdadas/polish-splade", "fp16": True}
encoder = SpladeEncoder(config, True)
results = encoder.encode_batch(["Jak dożyć 100 lat?", "Trzeba zdrowo się odżywiać i uprawiać sport."])
print(cos_sim(results[0], results[1]))

Using SPLADE to index and search large datasets is a more complex task and requires integration with term-based index such as Lucene. For this purpose, you can use the official SPLADE implementation or reimplementation of this model in our PIRB library.

Citation

@article{dadas2024pirb,
  title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods}, 
  author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
  year={2024},
  eprint={2402.13350},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Downloads last month
155
Safetensors
Model size
82M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including sdadas/polish-splade