easylm-ultrafeedback-sft-gemma-2-2b
This model is a fine-tuned version of google/gemma-2-2b on the ultrafeedback-sft dataset. It achieves the following results on the evaluation set:
- Loss: 1.2897
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 2
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5578 | 0.0371 | 500 | 1.4651 |
1.4645 | 0.0742 | 1000 | 1.4362 |
1.4198 | 0.1113 | 1500 | 1.4196 |
1.3469 | 0.1484 | 2000 | 1.4051 |
1.3816 | 0.1855 | 2500 | 1.3920 |
1.3653 | 0.2226 | 3000 | 1.3809 |
1.4087 | 0.2596 | 3500 | 1.3715 |
1.2973 | 0.2967 | 4000 | 1.3615 |
1.348 | 0.3338 | 4500 | 1.3545 |
1.4639 | 0.3709 | 5000 | 1.3480 |
1.4405 | 0.4080 | 5500 | 1.3408 |
1.2926 | 0.4451 | 6000 | 1.3349 |
1.3452 | 0.4822 | 6500 | 1.3268 |
1.3076 | 0.5193 | 7000 | 1.3202 |
1.2696 | 0.5564 | 7500 | 1.3154 |
1.3833 | 0.5935 | 8000 | 1.3104 |
1.3217 | 0.6306 | 8500 | 1.3060 |
1.2351 | 0.6677 | 9000 | 1.3026 |
1.5295 | 0.7047 | 9500 | 1.2990 |
1.293 | 0.7418 | 10000 | 1.2967 |
1.2231 | 0.7789 | 10500 | 1.2942 |
1.2721 | 0.8160 | 11000 | 1.2926 |
1.3877 | 0.8531 | 11500 | 1.2913 |
1.2929 | 0.8902 | 12000 | 1.2903 |
1.4017 | 0.9273 | 12500 | 1.2900 |
1.2126 | 0.9644 | 13000 | 1.2897 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 8
Model tree for scottsuk0306/easylm-ultrafeedback-sft-gemma-2-2b
Base model
google/gemma-2-2b