vca / README.md
sck's picture
Model save
a445435
|
raw
history blame
4.79 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - recall
model-index:
  - name: vca
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Recall
            type: recall
            value: 0.6533333333333333

vca

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3295
  • Recall: 0.6533

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Recall
No log 0.95 5 0.6389 0.0133
No log 1.9 10 0.5645 0.0
No log 2.86 15 0.4792 0.0
No log 4.0 21 0.4224 0.0
No log 4.95 26 0.3652 0.0
No log 5.9 31 0.3357 0.0
No log 6.86 36 0.2953 0.0
No log 8.0 42 0.2909 0.0133
No log 8.95 47 0.2937 0.7333
No log 9.9 52 0.2718 0.68
No log 10.86 57 0.2673 0.64
No log 12.0 63 0.3019 0.8667
No log 12.95 68 0.2945 0.4667
No log 13.9 73 0.2669 0.6667
No log 14.86 78 0.2504 0.7467
No log 16.0 84 0.2380 0.64
No log 16.95 89 0.2525 0.64
No log 17.9 94 0.2648 0.7467
No log 18.86 99 0.2711 0.7067
No log 20.0 105 0.2747 0.64
No log 20.95 110 0.2772 0.64
No log 21.9 115 0.3000 0.6267
No log 22.86 120 0.2871 0.5733
No log 24.0 126 0.3025 0.6667
No log 24.95 131 0.3317 0.5867
No log 25.9 136 0.3171 0.5467
No log 26.86 141 0.3322 0.64
No log 28.0 147 0.3207 0.6533
No log 28.95 152 0.3492 0.5733
No log 29.9 157 0.2965 0.68
No log 30.86 162 0.3256 0.72
No log 32.0 168 0.3460 0.6267
No log 32.95 173 0.3118 0.7067
No log 33.9 178 0.3656 0.6933
No log 34.86 183 0.3111 0.5867
No log 36.0 189 0.3119 0.6667
No log 36.95 194 0.3524 0.72
No log 37.9 199 0.3457 0.5333
No log 38.86 204 0.3460 0.56
No log 40.0 210 0.3518 0.6933
No log 40.95 215 0.2948 0.5867
No log 41.9 220 0.3640 0.5867
No log 42.86 225 0.3408 0.6133
No log 44.0 231 0.3350 0.6
No log 44.95 236 0.3832 0.72
No log 45.9 241 0.3298 0.6667
No log 46.86 246 0.3557 0.64
No log 48.0 252 0.3832 0.64
No log 48.95 257 0.3317 0.6533
No log 49.9 262 0.3980 0.6933
No log 50.86 267 0.3295 0.6533

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.6
  • Tokenizers 0.14.1