vca / README.md
sck's picture
Model save
ade7109
|
raw
history blame
4.79 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - recall
model-index:
  - name: vca
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Recall
            type: recall
            value: 0.6533333333333333

vca

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2071
  • Recall: 0.6533

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Recall
No log 1.0 9 0.6362 0.3333
No log 2.0 18 0.4641 0.0
No log 3.0 27 0.3251 0.0
No log 4.0 36 0.2605 0.0
No log 5.0 45 0.2100 0.0
No log 6.0 54 0.1943 0.08
No log 7.0 63 0.1986 0.64
No log 8.0 72 0.1856 0.6933
No log 9.0 81 0.1654 0.6933
No log 10.0 90 0.1593 0.72
No log 11.0 99 0.1638 0.68
No log 12.0 108 0.1732 0.6933
No log 13.0 117 0.1748 0.56
No log 14.0 126 0.1792 0.6533
No log 15.0 135 0.1743 0.84
No log 16.0 144 0.1760 0.5733
No log 17.0 153 0.1641 0.6
No log 18.0 162 0.1558 0.76
No log 19.0 171 0.2121 0.7867
No log 20.0 180 0.1765 0.56
No log 21.0 189 0.1802 0.7733
No log 22.0 198 0.1729 0.7467
No log 23.0 207 0.2004 0.48
No log 24.0 216 0.1794 0.72
No log 25.0 225 0.2185 0.7867
No log 26.0 234 0.2115 0.8533
No log 27.0 243 0.1999 0.7067
No log 28.0 252 0.1900 0.5467
No log 29.0 261 0.2158 0.72
No log 30.0 270 0.2515 0.8533
No log 31.0 279 0.2322 0.7733
No log 32.0 288 0.2024 0.8
No log 33.0 297 0.2342 0.76
No log 34.0 306 0.2205 0.7467
No log 35.0 315 0.1820 0.7067
No log 36.0 324 0.2169 0.68
No log 37.0 333 0.2170 0.6133
No log 38.0 342 0.1767 0.68
No log 39.0 351 0.2326 0.8133
No log 40.0 360 0.2386 0.76
No log 41.0 369 0.2431 0.68
No log 42.0 378 0.2160 0.6933
No log 43.0 387 0.2234 0.76
No log 44.0 396 0.2491 0.7467
No log 45.0 405 0.2342 0.6933
No log 46.0 414 0.2124 0.7333
No log 47.0 423 0.2602 0.6533
No log 48.0 432 0.2702 0.6133
No log 49.0 441 0.2258 0.6533
No log 50.0 450 0.2158 0.64
No log 51.0 459 0.2071 0.6533

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.6
  • Tokenizers 0.14.1