vca / README.md
sck's picture
update model card README.md
d8e8589
|
raw
history blame
2.05 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - recall
model-index:
  - name: vca
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Recall
            type: recall
            value: 0.7818181818181819

vca

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3844
  • Recall: 0.7818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Recall
No log 1.0 11 0.4763 0.6987
No log 2.0 22 0.4438 0.6390
No log 3.0 33 0.4511 0.5870
No log 4.0 44 0.4084 0.7610
No log 5.0 55 0.3562 0.8078
No log 6.0 66 0.3844 0.7818

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3