File size: 2,508 Bytes
40e34b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from typing import Dict, List, Any
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch

class EndpointHandler():
    def __init__(self, path=""):
        #quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)

        # device_map = {
        #     "transformer.word_embeddings": 0,
        #     "transformer.word_embeddings_layernorm": 0,
        #     "lm_head": "cpu",
        #     "transformer.h": 0,
        #     "transformer.ln_f": 0,
        # }
        #path = "anon8231489123/gpt4-x-alpaca-13b-native-4bit-128g"

        self.model =  AutoModelForCausalLM.from_pretrained(
            path, 
            device_map="auto",
            load_in_8bit=True,
            #kwargs="--wbits 4 --groupsize 128",
            #device_map=device_map, 
            #quantization_config=quantization_config
        )
        self.tokenizer = AutoTokenizer.from_pretrained(path)
        self.pipeline = pipeline("conversational", model = self.model, tokenizer=self.tokenizer, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16)
    
        #rep= "anon8231489123/gpt4-x-alpaca-13b-native-4bit-128g"
        # tokenizer = AutoTokenizer.from_pretrained(rep)
        #model = AutoModelForCausalLM.from_pretrained(rep)

        # inputs = tokenizer(["Today is"], return_tensors="pt")

        # reply_ids = model.generate(**inputs, max_new_tokens=590) # return_dict_in_generate=True, output_scores=True
        # outputs = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
        # print(outputs)

        #modelPath = "/"
        
        #self.pipeline = pipeline("conversational", model=modelPath)

        # Preload all the elements you are going to need at inference.
        # pseudo:
        # self.model= load_model(path)
        print("end")

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # preprocess 
        input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids      
        
        # pass inputs with all kwargs in data
        if parameters is not None:
            outputs = self.model.generate(input_ids, **parameters)
        else:
            outputs = self.model.generate(input_ids)
        
        # postprocess the prediction
        prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return [{"generated_text": prediction}]