Create handler.py
Browse files- handler.py +64 -0
handler.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class EndpointHandler():
|
6 |
+
def __init__(self, path=""):
|
7 |
+
#quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
|
8 |
+
|
9 |
+
# device_map = {
|
10 |
+
# "transformer.word_embeddings": 0,
|
11 |
+
# "transformer.word_embeddings_layernorm": 0,
|
12 |
+
# "lm_head": "cpu",
|
13 |
+
# "transformer.h": 0,
|
14 |
+
# "transformer.ln_f": 0,
|
15 |
+
# }
|
16 |
+
#path = "anon8231489123/gpt4-x-alpaca-13b-native-4bit-128g"
|
17 |
+
|
18 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
path,
|
20 |
+
device_map="auto",
|
21 |
+
load_in_8bit=True,
|
22 |
+
#kwargs="--wbits 4 --groupsize 128",
|
23 |
+
#device_map=device_map,
|
24 |
+
#quantization_config=quantization_config
|
25 |
+
)
|
26 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
27 |
+
self.pipeline = pipeline("conversational", model = self.model, tokenizer=self.tokenizer, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16)
|
28 |
+
|
29 |
+
#rep= "anon8231489123/gpt4-x-alpaca-13b-native-4bit-128g"
|
30 |
+
# tokenizer = AutoTokenizer.from_pretrained(rep)
|
31 |
+
#model = AutoModelForCausalLM.from_pretrained(rep)
|
32 |
+
|
33 |
+
# inputs = tokenizer(["Today is"], return_tensors="pt")
|
34 |
+
|
35 |
+
# reply_ids = model.generate(**inputs, max_new_tokens=590) # return_dict_in_generate=True, output_scores=True
|
36 |
+
# outputs = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
|
37 |
+
# print(outputs)
|
38 |
+
|
39 |
+
#modelPath = "/"
|
40 |
+
|
41 |
+
#self.pipeline = pipeline("conversational", model=modelPath)
|
42 |
+
|
43 |
+
# Preload all the elements you are going to need at inference.
|
44 |
+
# pseudo:
|
45 |
+
# self.model= load_model(path)
|
46 |
+
print("end")
|
47 |
+
|
48 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
49 |
+
inputs = data.pop("inputs", data)
|
50 |
+
parameters = data.pop("parameters", None)
|
51 |
+
|
52 |
+
# preprocess
|
53 |
+
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
|
54 |
+
|
55 |
+
# pass inputs with all kwargs in data
|
56 |
+
if parameters is not None:
|
57 |
+
outputs = self.model.generate(input_ids, **parameters)
|
58 |
+
else:
|
59 |
+
outputs = self.model.generate(input_ids)
|
60 |
+
|
61 |
+
# postprocess the prediction
|
62 |
+
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
+
|
64 |
+
return [{"generated_text": prediction}]
|