metadata
tags:
- generated_from_trainer
base_model: microsoft/deberta-v3-large
model-index:
- name: deberta-v3-large-ddlm
results: []
deberta-v3-large-ddlm
This model is a fine-tuned version of microsoft/deberta-v3-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5241
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9823 | 0.01 | 1000 | 0.9163 |
0.8817 | 0.02 | 2000 | 0.9022 |
0.9647 | 0.03 | 3000 | 0.8879 |
0.8646 | 0.04 | 4000 | 0.8577 |
0.9159 | 0.06 | 5000 | 0.8677 |
0.8449 | 0.07 | 6000 | 0.8221 |
0.8681 | 0.08 | 7000 | 0.8332 |
0.8738 | 0.09 | 8000 | 0.8334 |
0.8638 | 0.1 | 9000 | 0.8236 |
0.9066 | 0.11 | 10000 | 0.8200 |
0.8686 | 0.12 | 11000 | 0.8092 |
0.7736 | 0.13 | 12000 | 0.8199 |
0.8054 | 0.14 | 13000 | 0.7972 |
0.8934 | 0.16 | 14000 | 0.7998 |
0.7884 | 0.17 | 15000 | 0.7895 |
0.8278 | 0.18 | 16000 | 0.7586 |
0.8482 | 0.19 | 17000 | 0.7562 |
0.8716 | 0.2 | 18000 | 0.7819 |
0.8881 | 0.21 | 19000 | 0.7878 |
0.8397 | 0.22 | 20000 | 0.7989 |
0.811 | 0.23 | 21000 | 0.7846 |
0.7762 | 0.24 | 22000 | 0.7753 |
0.7778 | 0.25 | 23000 | 0.7878 |
0.737 | 0.27 | 24000 | 0.7473 |
0.8451 | 0.28 | 25000 | 0.7460 |
0.823 | 0.29 | 26000 | 0.7300 |
0.7472 | 0.3 | 27000 | 0.7292 |
0.8048 | 0.31 | 28000 | 0.7697 |
0.7962 | 0.32 | 29000 | 0.7359 |
0.8048 | 0.33 | 30000 | 0.7409 |
0.8095 | 0.34 | 31000 | 0.7434 |
0.7451 | 0.35 | 32000 | 0.7534 |
0.6997 | 0.37 | 33000 | 0.7602 |
0.8116 | 0.38 | 34000 | 0.7566 |
0.7963 | 0.39 | 35000 | 0.7245 |
0.786 | 0.4 | 36000 | 0.7311 |
0.7991 | 0.41 | 37000 | 0.7230 |
0.723 | 0.42 | 38000 | 0.7209 |
0.789 | 0.43 | 39000 | 0.7418 |
0.7296 | 0.44 | 40000 | 0.7325 |
0.7363 | 0.45 | 41000 | 0.7134 |
0.758 | 0.47 | 42000 | 0.6948 |
0.711 | 0.48 | 43000 | 0.6992 |
0.7984 | 0.49 | 44000 | 0.7055 |
0.8402 | 0.5 | 45000 | 0.7108 |
0.8553 | 0.51 | 46000 | 0.7005 |
0.7538 | 0.52 | 47000 | 0.7208 |
0.7169 | 0.53 | 48000 | 0.7291 |
0.7345 | 0.54 | 49000 | 0.7195 |
0.758 | 0.55 | 50000 | 0.6694 |
0.7868 | 0.56 | 51000 | 0.6938 |
0.6966 | 0.58 | 52000 | 0.6867 |
0.7389 | 0.59 | 53000 | 0.6862 |
0.7529 | 0.6 | 54000 | 0.7175 |
0.7345 | 0.61 | 55000 | 0.6970 |
0.766 | 0.62 | 56000 | 0.7017 |
0.7043 | 0.63 | 57000 | 0.6916 |
0.6474 | 0.64 | 58000 | 0.7129 |
0.7456 | 0.65 | 59000 | 0.6802 |
0.7512 | 0.66 | 60000 | 0.6951 |
0.6816 | 0.68 | 61000 | 0.7072 |
0.7206 | 0.69 | 62000 | 0.6967 |
0.6439 | 0.7 | 63000 | 0.6798 |
0.7309 | 0.71 | 64000 | 0.7163 |
0.6925 | 0.72 | 65000 | 0.6794 |
0.6833 | 0.73 | 66000 | 0.6637 |
0.6643 | 0.74 | 67000 | 0.6855 |
0.6433 | 0.75 | 68000 | 0.7035 |
0.7595 | 0.76 | 69000 | 0.7008 |
0.7214 | 0.78 | 70000 | 0.6618 |
0.7111 | 0.79 | 71000 | 0.6850 |
0.7375 | 0.8 | 72000 | 0.6909 |
0.6779 | 0.81 | 73000 | 0.7042 |
0.6646 | 0.82 | 74000 | 0.6634 |
0.6616 | 0.83 | 75000 | 0.7020 |
0.6762 | 0.84 | 76000 | 0.6638 |
0.7509 | 0.85 | 77000 | 0.6541 |
0.6963 | 0.86 | 78000 | 0.6781 |
0.6949 | 0.87 | 79000 | 0.6576 |
0.6781 | 0.89 | 80000 | 0.6900 |
0.65 | 0.9 | 81000 | 0.6835 |
0.7205 | 0.91 | 82000 | 0.6712 |
0.6901 | 0.92 | 83000 | 0.6699 |
0.6972 | 0.93 | 84000 | 0.6456 |
0.7041 | 0.94 | 85000 | 0.6497 |
0.6864 | 0.95 | 86000 | 0.6432 |
0.7308 | 0.96 | 87000 | 0.6497 |
0.6886 | 0.97 | 88000 | 0.6674 |
0.6947 | 0.99 | 89000 | 0.6638 |
0.6567 | 1.0 | 90000 | 0.6242 |
0.7185 | 1.01 | 91000 | 0.6704 |
0.7435 | 1.02 | 92000 | 0.6681 |
0.7108 | 1.03 | 93000 | 0.6619 |
0.6942 | 1.04 | 94000 | 0.6306 |
0.6998 | 1.05 | 95000 | 0.6409 |
0.6481 | 1.06 | 96000 | 0.6476 |
0.727 | 1.07 | 97000 | 0.6354 |
0.647 | 1.09 | 98000 | 0.6222 |
0.6622 | 1.1 | 99000 | 0.6119 |
0.6346 | 1.11 | 100000 | 0.6471 |
0.6203 | 1.12 | 101000 | 0.6655 |
0.6765 | 1.13 | 102000 | 0.6473 |
0.6703 | 1.14 | 103000 | 0.6308 |
0.6793 | 1.15 | 104000 | 0.6531 |
0.683 | 1.16 | 105000 | 0.6693 |
0.6654 | 1.17 | 106000 | 0.6241 |
0.6626 | 1.18 | 107000 | 0.6215 |
0.6976 | 1.2 | 108000 | 0.6479 |
0.7494 | 1.21 | 109000 | 0.6345 |
0.691 | 1.22 | 110000 | 0.6322 |
0.6568 | 1.23 | 111000 | 0.6265 |
0.705 | 1.24 | 112000 | 0.6281 |
0.6307 | 1.25 | 113000 | 0.6202 |
0.6828 | 1.26 | 114000 | 0.6158 |
0.6403 | 1.27 | 115000 | 0.6495 |
0.6615 | 1.28 | 116000 | 0.6298 |
0.6237 | 1.3 | 117000 | 0.6234 |
0.6707 | 1.31 | 118000 | 0.6267 |
0.6823 | 1.32 | 119000 | 0.6299 |
0.6333 | 1.33 | 120000 | 0.6169 |
0.685 | 1.34 | 121000 | 0.6371 |
0.6941 | 1.35 | 122000 | 0.6245 |
0.6358 | 1.36 | 123000 | 0.6291 |
0.6754 | 1.37 | 124000 | 0.6400 |
0.6286 | 1.38 | 125000 | 0.6148 |
0.7036 | 1.4 | 126000 | 0.6033 |
0.645 | 1.41 | 127000 | 0.6295 |
0.6578 | 1.42 | 128000 | 0.6348 |
0.651 | 1.43 | 129000 | 0.6222 |
0.5558 | 1.44 | 130000 | 0.6231 |
0.6601 | 1.45 | 131000 | 0.6302 |
0.6304 | 1.46 | 132000 | 0.6127 |
0.6177 | 1.47 | 133000 | 0.6047 |
0.5933 | 1.48 | 134000 | 0.6169 |
0.6307 | 1.49 | 135000 | 0.6012 |
0.6018 | 1.51 | 136000 | 0.5900 |
0.6724 | 1.52 | 137000 | 0.6086 |
0.6367 | 1.53 | 138000 | 0.6414 |
0.6515 | 1.54 | 139000 | 0.6267 |
0.5902 | 1.55 | 140000 | 0.5913 |
0.6523 | 1.56 | 141000 | 0.5992 |
0.6005 | 1.57 | 142000 | 0.6128 |
0.6179 | 1.58 | 143000 | 0.6089 |
0.6154 | 1.59 | 144000 | 0.6353 |
0.6298 | 1.61 | 145000 | 0.5997 |
0.5623 | 1.62 | 146000 | 0.5974 |
0.5787 | 1.63 | 147000 | 0.6165 |
0.6099 | 1.64 | 148000 | 0.6246 |
0.658 | 1.65 | 149000 | 0.6116 |
0.6567 | 1.66 | 150000 | 0.5938 |
0.6227 | 1.67 | 151000 | 0.5948 |
0.5858 | 1.68 | 152000 | 0.5822 |
0.6227 | 1.69 | 153000 | 0.5802 |
0.6699 | 1.71 | 154000 | 0.6067 |
0.5989 | 1.72 | 155000 | 0.6073 |
0.6184 | 1.73 | 156000 | 0.6124 |
0.6404 | 1.74 | 157000 | 0.6169 |
0.639 | 1.75 | 158000 | 0.5997 |
0.6433 | 1.76 | 159000 | 0.5989 |
0.5574 | 1.77 | 160000 | 0.5796 |
0.5983 | 1.78 | 161000 | 0.6036 |
0.6532 | 1.79 | 162000 | 0.5888 |
0.6679 | 1.8 | 163000 | 0.6038 |
0.62 | 1.82 | 164000 | 0.5984 |
0.5541 | 1.83 | 165000 | 0.6003 |
0.6192 | 1.84 | 166000 | 0.5786 |
0.6613 | 1.85 | 167000 | 0.6064 |
0.5923 | 1.86 | 168000 | 0.6018 |
0.5894 | 1.87 | 169000 | 0.5912 |
0.6462 | 1.88 | 170000 | 0.5902 |
0.5811 | 1.89 | 171000 | 0.6030 |
0.6358 | 1.9 | 172000 | 0.5915 |
0.614 | 1.92 | 173000 | 0.5886 |
0.5969 | 1.93 | 174000 | 0.6084 |
0.6146 | 1.94 | 175000 | 0.6003 |
0.6051 | 1.95 | 176000 | 0.5835 |
0.6268 | 1.96 | 177000 | 0.5999 |
0.6436 | 1.97 | 178000 | 0.5965 |
0.6167 | 1.98 | 179000 | 0.5789 |
0.5647 | 1.99 | 180000 | 0.5669 |
0.6038 | 2.0 | 181000 | 0.6009 |
0.6082 | 2.02 | 182000 | 0.5799 |
0.6483 | 2.03 | 183000 | 0.5716 |
0.5503 | 2.04 | 184000 | 0.5806 |
0.6231 | 2.05 | 185000 | 0.5699 |
0.5892 | 2.06 | 186000 | 0.5979 |
0.5933 | 2.07 | 187000 | 0.5709 |
0.594 | 2.08 | 188000 | 0.5719 |
0.5838 | 2.09 | 189000 | 0.5879 |
0.6039 | 2.1 | 190000 | 0.5984 |
0.5911 | 2.11 | 191000 | 0.5953 |
0.563 | 2.13 | 192000 | 0.5772 |
0.5671 | 2.14 | 193000 | 0.5771 |
0.6051 | 2.15 | 194000 | 0.5972 |
0.5852 | 2.16 | 195000 | 0.5917 |
0.5757 | 2.17 | 196000 | 0.5819 |
0.6557 | 2.18 | 197000 | 0.5655 |
0.6055 | 2.19 | 198000 | 0.5820 |
0.6067 | 2.2 | 199000 | 0.5801 |
0.6422 | 2.21 | 200000 | 0.5590 |
0.624 | 2.23 | 201000 | 0.5573 |
0.6222 | 2.24 | 202000 | 0.5661 |
0.5597 | 2.25 | 203000 | 0.5786 |
0.5746 | 2.26 | 204000 | 0.5622 |
0.6269 | 2.27 | 205000 | 0.5804 |
0.6241 | 2.28 | 206000 | 0.5696 |
0.6519 | 2.29 | 207000 | 0.5367 |
0.6161 | 2.3 | 208000 | 0.5666 |
0.5415 | 2.31 | 209000 | 0.5633 |
0.633 | 2.33 | 210000 | 0.5499 |
0.5566 | 2.34 | 211000 | 0.5822 |
0.6158 | 2.35 | 212000 | 0.5826 |
0.5574 | 2.36 | 213000 | 0.5429 |
0.5748 | 2.37 | 214000 | 0.5736 |
0.5818 | 2.38 | 215000 | 0.5599 |
0.6226 | 2.39 | 216000 | 0.5407 |
0.5733 | 2.4 | 217000 | 0.5759 |
0.6268 | 2.41 | 218000 | 0.5725 |
0.5885 | 2.42 | 219000 | 0.5771 |
0.5708 | 2.44 | 220000 | 0.5654 |
0.5783 | 2.45 | 221000 | 0.5756 |
0.61 | 2.46 | 222000 | 0.5647 |
0.5848 | 2.47 | 223000 | 0.5532 |
0.5869 | 2.48 | 224000 | 0.5519 |
0.5717 | 2.49 | 225000 | 0.5621 |
0.5675 | 2.5 | 226000 | 0.5446 |
0.6321 | 2.51 | 227000 | 0.5812 |
0.568 | 2.52 | 228000 | 0.5673 |
0.5577 | 2.54 | 229000 | 0.5590 |
0.5888 | 2.55 | 230000 | 0.5628 |
0.6389 | 2.56 | 231000 | 0.5828 |
0.5782 | 2.57 | 232000 | 0.5543 |
0.5871 | 2.58 | 233000 | 0.5575 |
0.5593 | 2.59 | 234000 | 0.5625 |
0.6167 | 2.6 | 235000 | 0.5450 |
0.5828 | 2.61 | 236000 | 0.5627 |
0.5411 | 2.62 | 237000 | 0.5498 |
0.6168 | 2.64 | 238000 | 0.5891 |
0.6508 | 2.65 | 239000 | 0.5811 |
0.6322 | 2.66 | 240000 | 0.5649 |
0.6131 | 2.67 | 241000 | 0.5473 |
0.5419 | 2.68 | 242000 | 0.5583 |
0.5685 | 2.69 | 243000 | 0.5635 |
0.5267 | 2.7 | 244000 | 0.5481 |
0.5357 | 2.71 | 245000 | 0.5474 |
0.585 | 2.72 | 246000 | 0.5281 |
0.5894 | 2.73 | 247000 | 0.5457 |
0.5665 | 2.75 | 248000 | 0.5579 |
0.5409 | 2.76 | 249000 | 0.5412 |
0.6051 | 2.77 | 250000 | 0.5447 |
0.5866 | 2.78 | 251000 | 0.5535 |
0.5348 | 2.79 | 252000 | 0.5377 |
0.5606 | 2.8 | 253000 | 0.5524 |
0.5142 | 2.81 | 254000 | 0.5441 |
0.543 | 2.82 | 255000 | 0.5499 |
0.5763 | 2.83 | 256000 | 0.5241 |
Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.11.0