|
--- |
|
license: mit |
|
language: |
|
- ja |
|
pipeline_tag: text-generation |
|
base_model: |
|
- sbintuitions/sarashina2.2-0.5b |
|
--- |
|
|
|
# sbintuitions/sarashina2.2-0.5b-instruct-v0.1 |
|
|
|
## Model Summary |
|
|
|
This repository provides Japanese language models trained by [SB Intuitions](https://www.sbintuitions.co.jp/). |
|
|
|
## Model Details |
|
|
|
- Model type: Autoregressive Language Model |
|
- Language(s): Japanese |
|
|
|
## Evaluation in Japanese and English Tasks |
|
|
|
| Model | Elyza-tasks-100 | Japanese MT Bench | English MT Bench | |
|
| ------------------------------------------------------------------------------------------------- | --------------- | ----------------- | ---------------- | |
|
| [Qwen/Qwen2.5-0.5B-instruct](https://huggingface.co./Qwen/Qwen2.5-0.5B-Instruct) | 1.53 | 2.95 | 4.98 | |
|
| **sarashina2.2-0.5B-instruct-v0.1** | **2.38** | **4.55** | **5.09** | |
|
| | | | | |
|
| [Rakuten/RakutenAI-2.0-mini-instruct](https://huggingface.co./Rakuten/RakutenAI-2.0-mini-instruct) | 2.41 | 4.49 | 5.13 | |
|
| [SakanaAI/TinySwallow-1.5B-Instruct](https://huggingface.co./SakanaAI/TinySwallow-1.5B-Instruct) | 2.81 | **5.24** | 6.31 | |
|
| [Qwen/Qwen2.5-1.5B-instruct](https://huggingface.co./Qwen/Qwen2.5-1.5B-Instruct) | 2.28 | 4.06 | **6.99** | |
|
| [llm-jp/llm-jp-3-1.8b-instruct3](https://huggingface.co./llm-jp/llm-jp-3-1.8b-instruct3) | 2.53 | 4.62 | 4.83 | |
|
| **sarashina2.2-1B-instruct-v0.1** | **2.88** | 5.09 | 6.46 | |
|
| | | | | |
|
| [google/gemma-2-2b-jpn-it](https://huggingface.co./google/gemma-2-2b-jpn-it) | 3.02 | 5.19 | 7.56 | |
|
| [Qwen/Qwen2.5-3B-instruct](https://huggingface.co./Qwen/Qwen2.5-3B-Instruct) | 2.99 | 5.68 | **7.88** | |
|
| [llm-jp/llm-jp-3-3.7b-instruct3](https://huggingface.co./llm-jp/llm-jp-3-3.7b-instruct3) | 2.79 | 4.98 | 5.44 | |
|
| **sarashina2.2-3B-instruct-v0.1** | **3.75** | **6.51** | 7.71 | |
|
|
|
## How to Use |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed |
|
|
|
# モデルのロード |
|
model_name = "sbintuitions/sarashina2.2-0.5b-instruct-v0.1" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
chat_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
set_seed(123) |
|
|
|
# ユーザーの入力 |
|
user_input = [{"role": "user", "content": "こんにちは。あなたの名前を教えて"}] |
|
|
|
# モデルによる応答生成 |
|
responses = chat_pipeline( |
|
user_input, |
|
max_length=50, |
|
do_sample=True, |
|
num_return_sequences=3, |
|
) |
|
|
|
# 応答を表示 |
|
for i, response in enumerate(responses, 1): |
|
print(f"Response {i}: {response['generated_text']}") |
|
|
|
# Response 1: [{'role': 'user', 'content': 'こんにちは。あなたの名前を教えて'}, {'role': 'assistant', 'content': 'Sarashina2と言います。本日のご要件を教えて下さい。'}] |
|
# Response 2: [{'role': 'user', 'content': 'こんにちは。あなたの名前を教えて'}, {'role': 'assistant', 'content': 'こんにちは!私の名前はSarashina2です。今日はどうしましたか?'}] |
|
# Response 3: [{'role': 'user', 'content': 'こんにちは。あなたの名前を教えて'}, {'role': 'assistant', 'content': 'Sarashina2と言います。本日のご要件を教えて下さい。'}] |
|
``` |
|
|
|
## Limitations |
|
|
|
This model has limited safety training. |
|
Therefore, it might generate some meaningless sequences, some inaccurate instances, or biased/objectionable outputs. |
|
Before using it, we would like developers to tune models based on human preferences and safety considerations. |
|
|
|
## License |
|
|
|
MIT License |
|
|