|
--- |
|
license: other |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
widget: |
|
- src: >- |
|
https://media.istockphoto.com/id/515788534/photo/cheerful-and-confidant.jpg?s=612x612&w=0&k=20&c=T0Z4DfameRpyGhzevPomrm-wjZp7wmGjpAyjGcTzpkA= |
|
example_title: Person |
|
- src: >- |
|
https://storage.googleapis.com/pai-images/1484fd9ea9d746eb9f1de0d6778dbea2.jpeg |
|
example_title: Person |
|
datasets: |
|
- sayeed99/fashion_segmentation |
|
model-index: |
|
- name: segformer-b2-fashion |
|
results: [] |
|
pipeline_tag: image-segmentation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-b2-fashion |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co./nvidia/mit-b2) on the sayeed99/fashion_segmentation dataset. |
|
|
|
|
|
```python |
|
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation |
|
from PIL import Image |
|
import requests |
|
import matplotlib.pyplot as plt |
|
import torch.nn as nn |
|
|
|
processor = SegformerImageProcessor.from_pretrained("sayeed99/segformer-b2-fashion") |
|
model = AutoModelForSemanticSegmentation.from_pretrained("sayeed99/segformer-b2-fashion") |
|
|
|
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80" |
|
|
|
image = Image.open(requests.get(url, stream=True).raw) |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
logits = outputs.logits.cpu() |
|
|
|
upsampled_logits = nn.functional.interpolate( |
|
logits, |
|
size=image.size[::-1], |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
pred_seg = upsampled_logits.argmax(dim=1)[0] |
|
plt.imshow(pred_seg) |
|
``` |
|
|
|
Labels : {"0":"Everything Else", "1": "shirt, blouse", "2": "top, t-shirt, sweatshirt", "3": "sweater", "4": "cardigan", "5": "jacket", "6": "vest", "7": "pants", "8": "shorts", "9": "skirt", "10": "coat", "11": "dress", "12": "jumpsuit", "13": "cape", "14": "glasses", "15": "hat", "16": "headband, head covering, hair accessory", "17": "tie", "18": "glove", "19": "watch", "20": "belt", "21": "leg warmer", "22": "tights, stockings", "23": "sock", "24": "shoe", "25": "bag, wallet", "26": "scarf", "27": "umbrella", "28": "hood", "29": "collar", "30": "lapel", "31": "epaulette", "32": "sleeve", "33": "pocket", "34": "neckline", "35": "buckle", "36": "zipper", "37": "applique", "38": "bead", "39": "bow", "40": "flower", "41": "fringe", "42": "ribbon", "43": "rivet", "44": "ruffle", "45": "sequin", "46": "tassel"} |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.13.3 |
|
|
|
|
|
### License |
|
|
|
The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). |
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@article{DBLP:journals/corr/abs-2105-15203, |
|
author = {Enze Xie and |
|
Wenhai Wang and |
|
Zhiding Yu and |
|
Anima Anandkumar and |
|
Jose M. Alvarez and |
|
Ping Luo}, |
|
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with |
|
Transformers}, |
|
journal = {CoRR}, |
|
volume = {abs/2105.15203}, |
|
year = {2021}, |
|
url = {https://arxiv.org/abs/2105.15203}, |
|
eprinttype = {arXiv}, |
|
eprint = {2105.15203}, |
|
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |