sayakpaul's picture
sayakpaul HF staff
Training in progress epoch 0
8042bb9
|
raw
history blame
5.97 kB
metadata
license: other
tags:
  - generated_from_keras_callback
model-index:
  - name: sayakpaul/mit-b0-finetuned-sidewalks
    results: []

sayakpaul/mit-b0-finetuned-sidewalks

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.5309
  • Validation Loss: 0.9380
  • Validation Mean Iou: 0.1674
  • Validation Mean Accuracy: 0.2153
  • Validation Overall Accuracy: 0.7545
  • Validation Per Category Iou: [0.00000000e+00 5.50637719e-01 7.61499932e-01 6.48396077e-04 3.56923200e-01 9.75833116e-02 0.00000000e+00 2.82588573e-02 5.28802378e-02 0.00000000e+00 5.93637894e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.53393589e-01 0.00000000e+00 1.50378244e-01 1.75413833e-02 0.00000000e+00 nan 0.00000000e+00 2.76097981e-02 0.00000000e+00 0.00000000e+00 7.86211179e-01 7.05492777e-01 8.34315629e-01 0.00000000e+00 0.00000000e+00 7.43899822e-03 0.00000000e+00]
  • Validation Per Category Accuracy: [0.00000000e+00 7.08723416e-01 9.71019213e-01 6.48665345e-04 4.09438347e-01 1.09468057e-01 nan 3.05932982e-02 5.44133505e-02 0.00000000e+00 8.74063503e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.66648886e-01 0.00000000e+00 1.61194155e-01 1.77691783e-02 0.00000000e+00 nan 0.00000000e+00 2.81195635e-02 0.00000000e+00 0.00000000e+00 9.17500033e-01 8.30294930e-01 9.02491399e-01 0.00000000e+00 0.00000000e+00 7.77243386e-03 0.00000000e+00]
  • Epoch: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Validation Mean Iou Validation Mean Accuracy Validation Overall Accuracy Validation Per Category Iou Validation Per Category Accuracy Epoch
1.5309 0.9380 0.1674 0.2153 0.7545 [0.00000000e+00 5.50637719e-01 7.61499932e-01 6.48396077e-04
3.56923200e-01 9.75833116e-02 0.00000000e+00 2.82588573e-02
5.28802378e-02 0.00000000e+00 5.93637894e-01 0.00000000e+00
0.00000000e+00 nan 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 5.53393589e-01 0.00000000e+00
1.50378244e-01 1.75413833e-02 0.00000000e+00 nan
0.00000000e+00 2.76097981e-02 0.00000000e+00 0.00000000e+00
7.86211179e-01 7.05492777e-01 8.34315629e-01 0.00000000e+00
0.00000000e+00 7.43899822e-03 0.00000000e+00] [0.00000000e+00 7.08723416e-01 9.71019213e-01 6.48665345e-04
4.09438347e-01 1.09468057e-01 nan 3.05932982e-02
5.44133505e-02 0.00000000e+00 8.74063503e-01 0.00000000e+00
0.00000000e+00 nan 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 8.66648886e-01 0.00000000e+00
1.61194155e-01 1.77691783e-02 0.00000000e+00 nan
0.00000000e+00 2.81195635e-02 0.00000000e+00 0.00000000e+00
9.17500033e-01 8.30294930e-01 9.02491399e-01 0.00000000e+00
0.00000000e+00 7.77243386e-03 0.00000000e+00] 0

Framework versions

  • Transformers 4.24.0
  • TensorFlow 2.9.2
  • Datasets 2.6.1
  • Tokenizers 0.13.1