metadata
license: other
tags:
- generated_from_keras_callback
model-index:
- name: sayakpaul/mit-b0-finetuned-sidewalks
results: []
sayakpaul/mit-b0-finetuned-sidewalks
This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.5309
- Validation Loss: 0.9380
- Validation Mean Iou: 0.1674
- Validation Mean Accuracy: 0.2153
- Validation Overall Accuracy: 0.7545
- Validation Per Category Iou: [0.00000000e+00 5.50637719e-01 7.61499932e-01 6.48396077e-04 3.56923200e-01 9.75833116e-02 0.00000000e+00 2.82588573e-02 5.28802378e-02 0.00000000e+00 5.93637894e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.53393589e-01 0.00000000e+00 1.50378244e-01 1.75413833e-02 0.00000000e+00 nan 0.00000000e+00 2.76097981e-02 0.00000000e+00 0.00000000e+00 7.86211179e-01 7.05492777e-01 8.34315629e-01 0.00000000e+00 0.00000000e+00 7.43899822e-03 0.00000000e+00]
- Validation Per Category Accuracy: [0.00000000e+00 7.08723416e-01 9.71019213e-01 6.48665345e-04 4.09438347e-01 1.09468057e-01 nan 3.05932982e-02 5.44133505e-02 0.00000000e+00 8.74063503e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.66648886e-01 0.00000000e+00 1.61194155e-01 1.77691783e-02 0.00000000e+00 nan 0.00000000e+00 2.81195635e-02 0.00000000e+00 0.00000000e+00 9.17500033e-01 8.30294930e-01 9.02491399e-01 0.00000000e+00 0.00000000e+00 7.77243386e-03 0.00000000e+00]
- Epoch: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Per Category Iou | Validation Per Category Accuracy | Epoch |
---|---|---|---|---|---|---|---|
1.5309 | 0.9380 | 0.1674 | 0.2153 | 0.7545 | [0.00000000e+00 5.50637719e-01 7.61499932e-01 6.48396077e-04 | ||
3.56923200e-01 9.75833116e-02 0.00000000e+00 2.82588573e-02 | |||||||
5.28802378e-02 0.00000000e+00 5.93637894e-01 0.00000000e+00 | |||||||
0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 | |||||||
0.00000000e+00 0.00000000e+00 5.53393589e-01 0.00000000e+00 | |||||||
1.50378244e-01 1.75413833e-02 0.00000000e+00 nan | |||||||
0.00000000e+00 2.76097981e-02 0.00000000e+00 0.00000000e+00 | |||||||
7.86211179e-01 7.05492777e-01 8.34315629e-01 0.00000000e+00 | |||||||
0.00000000e+00 7.43899822e-03 0.00000000e+00] | [0.00000000e+00 7.08723416e-01 9.71019213e-01 6.48665345e-04 | ||||||
4.09438347e-01 1.09468057e-01 nan 3.05932982e-02 | |||||||
5.44133505e-02 0.00000000e+00 8.74063503e-01 0.00000000e+00 | |||||||
0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 | |||||||
0.00000000e+00 0.00000000e+00 8.66648886e-01 0.00000000e+00 | |||||||
1.61194155e-01 1.77691783e-02 0.00000000e+00 nan | |||||||
0.00000000e+00 2.81195635e-02 0.00000000e+00 0.00000000e+00 | |||||||
9.17500033e-01 8.30294930e-01 9.02491399e-01 0.00000000e+00 | |||||||
0.00000000e+00 7.77243386e-03 0.00000000e+00] | 0 |
Framework versions
- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.6.1
- Tokenizers 0.13.1