sasuface's picture
End of training
a1ba885 verified
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: facebook/esm2_t36_3B_UR50D
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: esm2-t36-3B-lora-16-remote-homology-filtered
    results: []

esm2-t36-3B-lora-16-remote-homology-filtered

This model is a fine-tuned version of facebook/esm2_t36_3B_UR50D on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4403
  • Precision: 0.7922
  • Recall: 0.8139
  • F1-score: 0.8029
  • Accuracy: 0.7990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1-score Accuracy
0.535 0.9992 664 0.5186 0.8002 0.6630 0.7252 0.7472
0.4946 2.0 1329 0.5065 0.6945 0.8969 0.7828 0.7496
0.4727 2.9992 1993 0.4592 0.7917 0.7876 0.7897 0.7889
0.4439 4.0 2658 0.4471 0.8087 0.7798 0.7940 0.7964
0.4234 4.9962 3320 0.4403 0.7922 0.8139 0.8029 0.7990

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1