Multilingual Swahili Embeddings Collection
Collection
This collection features high-quality, multilingual embeddings specifically tailored for Swahili.
•
6 items
•
Updated
This is a sentence-transformers model finetuned from UBC-NLP/serengeti-E250. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ElectraModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sartifyllc/swahili-serengeti-E250-nli-matryoshka")
# Run inference
sentences = [
'Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo ya miguu ya benchi.',
'Mwanamume amelala uso chini kwenye benchi ya bustani.',
'Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sts-test-768
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7113 |
spearman_cosine | 0.7065 |
pearson_manhattan | 0.7134 |
spearman_manhattan | 0.7023 |
pearson_euclidean | 0.7138 |
spearman_euclidean | 0.7021 |
pearson_dot | 0.3921 |
spearman_dot | 0.3601 |
pearson_max | 0.7138 |
spearman_max | 0.7065 |
sts-test-512
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7091 |
spearman_cosine | 0.7046 |
pearson_manhattan | 0.713 |
spearman_manhattan | 0.7022 |
pearson_euclidean | 0.7139 |
spearman_euclidean | 0.7032 |
pearson_dot | 0.3935 |
spearman_dot | 0.3628 |
pearson_max | 0.7139 |
spearman_max | 0.7046 |
sts-test-256
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7068 |
spearman_cosine | 0.7044 |
pearson_manhattan | 0.7137 |
spearman_manhattan | 0.7032 |
pearson_euclidean | 0.7147 |
spearman_euclidean | 0.7039 |
pearson_dot | 0.3746 |
spearman_dot | 0.3444 |
pearson_max | 0.7147 |
spearman_max | 0.7044 |
sts-test-128
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7047 |
spearman_cosine | 0.7051 |
pearson_manhattan | 0.712 |
spearman_manhattan | 0.701 |
pearson_euclidean | 0.7132 |
spearman_euclidean | 0.7016 |
pearson_dot | 0.3546 |
spearman_dot | 0.3229 |
pearson_max | 0.7132 |
spearman_max | 0.7051 |
sts-test-64
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7012 |
spearman_cosine | 0.7044 |
pearson_manhattan | 0.7091 |
spearman_manhattan | 0.6973 |
pearson_euclidean | 0.7103 |
spearman_euclidean | 0.6986 |
pearson_dot | 0.338 |
spearman_dot | 0.3051 |
pearson_max | 0.7103 |
spearman_max | 0.7044 |
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicatesoverwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalEpoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
---|---|---|---|---|---|---|---|
0.0057 | 100 | 25.7713 | - | - | - | - | - |
0.0115 | 200 | 20.7886 | - | - | - | - | - |
0.0172 | 300 | 17.0398 | - | - | - | - | - |
0.0229 | 400 | 15.3913 | - | - | - | - | - |
0.0287 | 500 | 14.0214 | - | - | - | - | - |
0.0344 | 600 | 12.2125 | - | - | - | - | - |
0.0402 | 700 | 10.3033 | - | - | - | - | - |
0.0459 | 800 | 9.3822 | - | - | - | - | - |
0.0516 | 900 | 8.9276 | - | - | - | - | - |
0.0574 | 1000 | 8.552 | - | - | - | - | - |
0.0631 | 1100 | 8.6293 | - | - | - | - | - |
0.0688 | 1200 | 8.5353 | - | - | - | - | - |
0.0746 | 1300 | 8.6431 | - | - | - | - | - |
0.0803 | 1400 | 8.3192 | - | - | - | - | - |
0.0860 | 1500 | 7.1834 | - | - | - | - | - |
0.0918 | 1600 | 6.7834 | - | - | - | - | - |
0.0975 | 1700 | 6.4758 | - | - | - | - | - |
0.1033 | 1800 | 6.756 | - | - | - | - | - |
0.1090 | 1900 | 7.807 | - | - | - | - | - |
0.1147 | 2000 | 6.8836 | - | - | - | - | - |
0.1205 | 2100 | 6.9948 | - | - | - | - | - |
0.1262 | 2200 | 6.5031 | - | - | - | - | - |
0.1319 | 2300 | 6.3596 | - | - | - | - | - |
0.1377 | 2400 | 6.0257 | - | - | - | - | - |
0.1434 | 2500 | 5.9757 | - | - | - | - | - |
0.1491 | 2600 | 5.464 | - | - | - | - | - |
0.1549 | 2700 | 5.6518 | - | - | - | - | - |
0.1606 | 2800 | 6.2899 | - | - | - | - | - |
0.1664 | 2900 | 6.4876 | - | - | - | - | - |
0.1721 | 3000 | 6.9466 | - | - | - | - | - |
0.1778 | 3100 | 6.8439 | - | - | - | - | - |
0.1836 | 3200 | 6.2545 | - | - | - | - | - |
0.1893 | 3300 | 5.9795 | - | - | - | - | - |
0.1950 | 3400 | 5.3904 | - | - | - | - | - |
0.2008 | 3500 | 6.2798 | - | - | - | - | - |
0.2065 | 3600 | 5.6882 | - | - | - | - | - |
0.2122 | 3700 | 6.195 | - | - | - | - | - |
0.2180 | 3800 | 5.8728 | - | - | - | - | - |
0.2237 | 3900 | 6.2428 | - | - | - | - | - |
0.2294 | 4000 | 5.801 | - | - | - | - | - |
0.2352 | 4100 | 5.6918 | - | - | - | - | - |
0.2409 | 4200 | 5.3977 | - | - | - | - | - |
0.2467 | 4300 | 5.8792 | - | - | - | - | - |
0.2524 | 4400 | 5.9297 | - | - | - | - | - |
0.2581 | 4500 | 6.161 | - | - | - | - | - |
0.2639 | 4600 | 5.6571 | - | - | - | - | - |
0.2696 | 4700 | 5.5849 | - | - | - | - | - |
0.2753 | 4800 | 5.6382 | - | - | - | - | - |
0.2811 | 4900 | 5.2978 | - | - | - | - | - |
0.2868 | 5000 | 5.108 | - | - | - | - | - |
0.2925 | 5100 | 5.1158 | - | - | - | - | - |
0.2983 | 5200 | 5.6218 | - | - | - | - | - |
0.3040 | 5300 | 5.643 | - | - | - | - | - |
0.3098 | 5400 | 5.6894 | - | - | - | - | - |
0.3155 | 5500 | 5.373 | - | - | - | - | - |
0.3212 | 5600 | 5.0673 | - | - | - | - | - |
0.3270 | 5700 | 5.1915 | - | - | - | - | - |
0.3327 | 5800 | 5.3705 | - | - | - | - | - |
0.3384 | 5900 | 5.6432 | - | - | - | - | - |
0.3442 | 6000 | 5.2567 | - | - | - | - | - |
0.3499 | 6100 | 5.4516 | - | - | - | - | - |
0.3556 | 6200 | 5.4844 | - | - | - | - | - |
0.3614 | 6300 | 4.8238 | - | - | - | - | - |
0.3671 | 6400 | 4.8271 | - | - | - | - | - |
0.3729 | 6500 | 4.9863 | - | - | - | - | - |
0.3786 | 6600 | 5.4894 | - | - | - | - | - |
0.3843 | 6700 | 4.95 | - | - | - | - | - |
0.3901 | 6800 | 5.0881 | - | - | - | - | - |
0.3958 | 6900 | 5.249 | - | - | - | - | - |
0.4015 | 7000 | 5.0082 | - | - | - | - | - |
0.4073 | 7100 | 5.5064 | - | - | - | - | - |
0.4130 | 7200 | 5.0885 | - | - | - | - | - |
0.4187 | 7300 | 5.0321 | - | - | - | - | - |
0.4245 | 7400 | 4.8212 | - | - | - | - | - |
0.4302 | 7500 | 5.4231 | - | - | - | - | - |
0.4360 | 7600 | 4.7687 | - | - | - | - | - |
0.4417 | 7700 | 4.5707 | - | - | - | - | - |
0.4474 | 7800 | 5.2229 | - | - | - | - | - |
0.4532 | 7900 | 5.2446 | - | - | - | - | - |
0.4589 | 8000 | 4.682 | - | - | - | - | - |
0.4646 | 8100 | 4.888 | - | - | - | - | - |
0.4704 | 8200 | 5.0496 | - | - | - | - | - |
0.4761 | 8300 | 4.7089 | - | - | - | - | - |
0.4818 | 8400 | 4.9567 | - | - | - | - | - |
0.4876 | 8500 | 4.7913 | - | - | - | - | - |
0.4933 | 8600 | 4.8904 | - | - | - | - | - |
0.4991 | 8700 | 5.247 | - | - | - | - | - |
0.5048 | 8800 | 4.8254 | - | - | - | - | - |
0.5105 | 8900 | 4.973 | - | - | - | - | - |
0.5163 | 9000 | 4.6657 | - | - | - | - | - |
0.5220 | 9100 | 4.9224 | - | - | - | - | - |
0.5277 | 9200 | 4.8163 | - | - | - | - | - |
0.5335 | 9300 | 4.3673 | - | - | - | - | - |
0.5392 | 9400 | 4.6509 | - | - | - | - | - |
0.5449 | 9500 | 5.0667 | - | - | - | - | - |
0.5507 | 9600 | 4.8771 | - | - | - | - | - |
0.5564 | 9700 | 5.1056 | - | - | - | - | - |
0.5622 | 9800 | 4.8297 | - | - | - | - | - |
0.5679 | 9900 | 5.0156 | - | - | - | - | - |
0.5736 | 10000 | 5.0758 | - | - | - | - | - |
0.5794 | 10100 | 4.9551 | - | - | - | - | - |
0.5851 | 10200 | 4.9594 | - | - | - | - | - |
0.5908 | 10300 | 5.136 | - | - | - | - | - |
0.5966 | 10400 | 4.7873 | - | - | - | - | - |
0.6023 | 10500 | 4.5154 | - | - | - | - | - |
0.6080 | 10600 | 4.928 | - | - | - | - | - |
0.6138 | 10700 | 5.1825 | - | - | - | - | - |
0.6195 | 10800 | 5.046 | - | - | - | - | - |
0.6253 | 10900 | 5.0111 | - | - | - | - | - |
0.6310 | 11000 | 4.9458 | - | - | - | - | - |
0.6367 | 11100 | 5.188 | - | - | - | - | - |
0.6425 | 11200 | 4.6219 | - | - | - | - | - |
0.6482 | 11300 | 5.3367 | - | - | - | - | - |
0.6539 | 11400 | 4.9851 | - | - | - | - | - |
0.6597 | 11500 | 5.2068 | - | - | - | - | - |
0.6654 | 11600 | 4.3789 | - | - | - | - | - |
0.6711 | 11700 | 5.3533 | - | - | - | - | - |
0.6769 | 11800 | 5.3983 | - | - | - | - | - |
0.6826 | 11900 | 4.6 | - | - | - | - | - |
0.6883 | 12000 | 4.6668 | - | - | - | - | - |
0.6941 | 12100 | 5.0814 | - | - | - | - | - |
0.6998 | 12200 | 5.0787 | - | - | - | - | - |
0.7056 | 12300 | 4.6325 | - | - | - | - | - |
0.7113 | 12400 | 4.9415 | - | - | - | - | - |
0.7170 | 12500 | 4.7053 | - | - | - | - | - |
0.7228 | 12600 | 4.3212 | - | - | - | - | - |
0.7285 | 12700 | 4.8205 | - | - | - | - | - |
0.7342 | 12800 | 4.8602 | - | - | - | - | - |
0.7400 | 12900 | 4.6944 | - | - | - | - | - |
0.7457 | 13000 | 4.7785 | - | - | - | - | - |
0.7514 | 13100 | 4.3515 | - | - | - | - | - |
0.7572 | 13200 | 5.7561 | - | - | - | - | - |
0.7629 | 13300 | 5.3526 | - | - | - | - | - |
0.7687 | 13400 | 5.187 | - | - | - | - | - |
0.7744 | 13500 | 5.0143 | - | - | - | - | - |
0.7801 | 13600 | 4.515 | - | - | - | - | - |
0.7859 | 13700 | 4.639 | - | - | - | - | - |
0.7916 | 13800 | 4.5556 | - | - | - | - | - |
0.7973 | 13900 | 4.3526 | - | - | - | - | - |
0.8031 | 14000 | 4.3091 | - | - | - | - | - |
0.8088 | 14100 | 4.1761 | - | - | - | - | - |
0.8145 | 14200 | 4.0484 | - | - | - | - | - |
0.8203 | 14300 | 4.1886 | - | - | - | - | - |
0.8260 | 14400 | 4.237 | - | - | - | - | - |
0.8318 | 14500 | 4.2167 | - | - | - | - | - |
0.8375 | 14600 | 4.0329 | - | - | - | - | - |
0.8432 | 14700 | 3.9902 | - | - | - | - | - |
0.8490 | 14800 | 3.8211 | - | - | - | - | - |
0.8547 | 14900 | 4.0048 | - | - | - | - | - |
0.8604 | 15000 | 3.7979 | - | - | - | - | - |
0.8662 | 15100 | 3.8117 | - | - | - | - | - |
0.8719 | 15200 | 3.909 | - | - | - | - | - |
0.8776 | 15300 | 3.8526 | - | - | - | - | - |
0.8834 | 15400 | 3.79 | - | - | - | - | - |
0.8891 | 15500 | 3.7792 | - | - | - | - | - |
0.8949 | 15600 | 3.7469 | - | - | - | - | - |
0.9006 | 15700 | 3.8387 | - | - | - | - | - |
0.9063 | 15800 | 3.6418 | - | - | - | - | - |
0.9121 | 15900 | 3.645 | - | - | - | - | - |
0.9178 | 16000 | 3.4861 | - | - | - | - | - |
0.9235 | 16100 | 3.6416 | - | - | - | - | - |
0.9293 | 16200 | 3.6665 | - | - | - | - | - |
0.9350 | 16300 | 3.6809 | - | - | - | - | - |
0.9407 | 16400 | 3.7944 | - | - | - | - | - |
0.9465 | 16500 | 3.6585 | - | - | - | - | - |
0.9522 | 16600 | 3.5398 | - | - | - | - | - |
0.9580 | 16700 | 3.7036 | - | - | - | - | - |
0.9637 | 16800 | 3.6386 | - | - | - | - | - |
0.9694 | 16900 | 3.5501 | - | - | - | - | - |
0.9752 | 17000 | 3.7957 | - | - | - | - | - |
0.9809 | 17100 | 3.6076 | - | - | - | - | - |
0.9866 | 17200 | 3.4653 | - | - | - | - | - |
0.9924 | 17300 | 3.6768 | - | - | - | - | - |
0.9981 | 17400 | 3.49 | - | - | - | - | - |
1.0 | 17433 | - | 0.7051 | 0.7044 | 0.7046 | 0.7044 | 0.7065 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
UBC-NLP/serengeti-E250