SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Mollel/swahili-n_li-triplet-swh-eng
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sartifyllc/MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka")
sentences = [
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
'mwanamume na mwanamke wenye mikoba',
'tai huruka',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6832 |
spearman_cosine |
0.6771 |
pearson_manhattan |
0.6892 |
spearman_manhattan |
0.6892 |
pearson_euclidean |
0.6917 |
spearman_euclidean |
0.6917 |
pearson_dot |
0.6418 |
spearman_dot |
0.6286 |
pearson_max |
0.6917 |
spearman_max |
0.6917 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6753 |
spearman_cosine |
0.6731 |
pearson_manhattan |
0.6907 |
spearman_manhattan |
0.6928 |
pearson_euclidean |
0.6934 |
spearman_euclidean |
0.6941 |
pearson_dot |
0.6004 |
spearman_dot |
0.5858 |
pearson_max |
0.6934 |
spearman_max |
0.6941 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6546 |
spearman_cosine |
0.6524 |
pearson_manhattan |
0.6837 |
spearman_manhattan |
0.6797 |
pearson_euclidean |
0.6861 |
spearman_euclidean |
0.6816 |
pearson_dot |
0.5121 |
spearman_dot |
0.4914 |
pearson_max |
0.6861 |
spearman_max |
0.6816 |
Training Details
Training Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 1,115,700 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 7 tokens
- mean: 15.18 tokens
- max: 80 tokens
|
- min: 5 tokens
- mean: 18.53 tokens
- max: 52 tokens
|
- min: 5 tokens
- mean: 17.8 tokens
- max: 53 tokens
|
- Samples:
anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika. |
Mtu yuko nje, juu ya farasi. |
Mtu yuko kwenye mkahawa, akiagiza omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 13,168 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 6 tokens
- mean: 26.43 tokens
- max: 94 tokens
|
- min: 5 tokens
- mean: 13.37 tokens
- max: 65 tokens
|
- min: 5 tokens
- mean: 14.7 tokens
- max: 54 tokens
|
- Samples:
anchor |
positive |
negative |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
The men are fighting outside a deli. |
Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda. |
Wanawake wawili wanashikilia vifurushi. |
Wanaume hao wanapigana nje ya duka la vyakula vitamu. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Two kids in jackets walk to school. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 64
learning_rate
: 2e-05
num_train_epochs
: 1
warmup_ratio
: 0.1
bf16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
prediction_loss_only
: True
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 64
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-64_spearman_cosine |
0.0115 |
100 |
9.6847 |
- |
- |
- |
0.0229 |
200 |
8.5336 |
- |
- |
- |
0.0344 |
300 |
7.768 |
- |
- |
- |
0.0459 |
400 |
7.2049 |
- |
- |
- |
0.0574 |
500 |
6.9425 |
- |
- |
- |
0.0688 |
600 |
7.029 |
- |
- |
- |
0.0803 |
700 |
6.259 |
- |
- |
- |
0.0918 |
800 |
6.0939 |
- |
- |
- |
0.1032 |
900 |
5.991 |
- |
- |
- |
0.1147 |
1000 |
5.39 |
- |
- |
- |
0.1262 |
1100 |
5.3214 |
- |
- |
- |
0.1377 |
1200 |
5.1469 |
- |
- |
- |
0.1491 |
1300 |
4.901 |
- |
- |
- |
0.1606 |
1400 |
5.2725 |
- |
- |
- |
0.1721 |
1500 |
5.077 |
- |
- |
- |
0.1835 |
1600 |
4.8006 |
- |
- |
- |
0.1950 |
1700 |
4.5318 |
- |
- |
- |
0.2065 |
1800 |
4.48 |
- |
- |
- |
0.2180 |
1900 |
4.5752 |
- |
- |
- |
0.2294 |
2000 |
4.427 |
- |
- |
- |
0.2409 |
2100 |
4.4021 |
- |
- |
- |
0.2524 |
2200 |
4.5903 |
- |
- |
- |
0.2639 |
2300 |
4.4561 |
- |
- |
- |
0.2753 |
2400 |
4.372 |
- |
- |
- |
0.2868 |
2500 |
4.2698 |
- |
- |
- |
0.2983 |
2600 |
4.3954 |
- |
- |
- |
0.3097 |
2700 |
4.2697 |
- |
- |
- |
0.3212 |
2800 |
4.125 |
- |
- |
- |
0.3327 |
2900 |
4.3611 |
- |
- |
- |
0.3442 |
3000 |
4.2527 |
- |
- |
- |
0.3556 |
3100 |
4.1892 |
- |
- |
- |
0.3671 |
3200 |
4.0417 |
- |
- |
- |
0.3786 |
3300 |
3.9434 |
- |
- |
- |
0.3900 |
3400 |
3.9797 |
- |
- |
- |
0.4015 |
3500 |
3.9611 |
- |
- |
- |
0.4130 |
3600 |
4.04 |
- |
- |
- |
0.4245 |
3700 |
3.965 |
- |
- |
- |
0.4359 |
3800 |
3.778 |
- |
- |
- |
0.4474 |
3900 |
4.0624 |
- |
- |
- |
0.4589 |
4000 |
3.8972 |
- |
- |
- |
0.4703 |
4100 |
3.7882 |
- |
- |
- |
0.4818 |
4200 |
3.8048 |
- |
- |
- |
0.4933 |
4300 |
3.9253 |
- |
- |
- |
0.5048 |
4400 |
3.9832 |
- |
- |
- |
0.5162 |
4500 |
3.6644 |
- |
- |
- |
0.5277 |
4600 |
3.7353 |
- |
- |
- |
0.5392 |
4700 |
3.7768 |
- |
- |
- |
0.5506 |
4800 |
3.796 |
- |
- |
- |
0.5621 |
4900 |
3.875 |
- |
- |
- |
0.5736 |
5000 |
3.7856 |
- |
- |
- |
0.5851 |
5100 |
3.8898 |
- |
- |
- |
0.5965 |
5200 |
3.6327 |
- |
- |
- |
0.6080 |
5300 |
3.7727 |
- |
- |
- |
0.6195 |
5400 |
3.8582 |
- |
- |
- |
0.6310 |
5500 |
3.729 |
- |
- |
- |
0.6424 |
5600 |
3.7088 |
- |
- |
- |
0.6539 |
5700 |
3.8414 |
- |
- |
- |
0.6654 |
5800 |
3.7624 |
- |
- |
- |
0.6768 |
5900 |
3.8816 |
- |
- |
- |
0.6883 |
6000 |
3.7483 |
- |
- |
- |
0.6998 |
6100 |
3.7759 |
- |
- |
- |
0.7113 |
6200 |
3.6674 |
- |
- |
- |
0.7227 |
6300 |
3.6441 |
- |
- |
- |
0.7342 |
6400 |
3.7779 |
- |
- |
- |
0.7457 |
6500 |
3.6691 |
- |
- |
- |
0.7571 |
6600 |
3.7636 |
- |
- |
- |
0.7686 |
6700 |
3.7424 |
- |
- |
- |
0.7801 |
6800 |
3.4943 |
- |
- |
- |
0.7916 |
6900 |
3.5399 |
- |
- |
- |
0.8030 |
7000 |
3.3658 |
- |
- |
- |
0.8145 |
7100 |
3.2856 |
- |
- |
- |
0.8260 |
7200 |
3.3702 |
- |
- |
- |
0.8374 |
7300 |
3.3121 |
- |
- |
- |
0.8489 |
7400 |
3.2322 |
- |
- |
- |
0.8604 |
7500 |
3.1577 |
- |
- |
- |
0.8719 |
7600 |
3.1873 |
- |
- |
- |
0.8833 |
7700 |
3.1492 |
- |
- |
- |
0.8948 |
7800 |
3.2035 |
- |
- |
- |
0.9063 |
7900 |
3.1607 |
- |
- |
- |
0.9177 |
8000 |
3.1557 |
- |
- |
- |
0.9292 |
8100 |
3.0915 |
- |
- |
- |
0.9407 |
8200 |
3.1335 |
- |
- |
- |
0.9522 |
8300 |
3.14 |
- |
- |
- |
0.9636 |
8400 |
3.1422 |
- |
- |
- |
0.9751 |
8500 |
3.1923 |
- |
- |
- |
0.9866 |
8600 |
3.1085 |
- |
- |
- |
0.9980 |
8700 |
3.089 |
- |
- |
- |
1.0 |
8717 |
- |
0.6731 |
0.6771 |
0.6524 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}