distilbert-base-uncased-finetuned-sprint-meds

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8121
  • Accuracy: 0.8843
  • F1: 0.8655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.4894 1.0 21 0.9107 0.8612 0.8354
0.4471 2.0 42 0.8964 0.8630 0.8363
0.4086 3.0 63 0.8796 0.8612 0.8348
0.3651 4.0 84 0.8581 0.8665 0.8415
0.3365 5.0 105 0.8546 0.8683 0.8429
0.3241 6.0 126 0.8448 0.8701 0.8467
0.299 7.0 147 0.8372 0.8683 0.8461
0.2498 8.0 168 0.8340 0.8737 0.8500
0.2579 9.0 189 0.8199 0.8737 0.8498
0.2526 10.0 210 0.8191 0.8772 0.8549
0.2243 11.0 231 0.8227 0.8719 0.8476
0.1888 12.0 252 0.8254 0.8719 0.8489
0.2159 13.0 273 0.8163 0.8772 0.8541
0.1845 14.0 294 0.8117 0.8754 0.8533
0.1774 15.0 315 0.8107 0.8772 0.8529
0.1503 16.0 336 0.8109 0.8790 0.8589
0.1565 17.0 357 0.8141 0.8772 0.8533
0.1539 18.0 378 0.8174 0.8772 0.8556
0.1393 19.0 399 0.8132 0.8790 0.8587
0.1279 20.0 420 0.8171 0.8826 0.8602
0.1231 21.0 441 0.8134 0.8808 0.8603
0.119 22.0 462 0.8132 0.8843 0.8628
0.1058 23.0 483 0.8043 0.8826 0.8631
0.1106 24.0 504 0.8159 0.8808 0.8596
0.1036 25.0 525 0.8090 0.8826 0.8612
0.0895 26.0 546 0.8093 0.8879 0.8666
0.1001 27.0 567 0.8121 0.8843 0.8636
0.0956 28.0 588 0.8113 0.8808 0.8609
0.0954 29.0 609 0.8099 0.8790 0.8581
0.0856 30.0 630 0.8169 0.8826 0.8616
0.0819 31.0 651 0.8204 0.8790 0.8590
0.0888 32.0 672 0.8125 0.8826 0.8644
0.0806 33.0 693 0.8144 0.8826 0.8628
0.0836 34.0 714 0.8153 0.8790 0.8583
0.0832 35.0 735 0.8139 0.8843 0.8644
0.0719 36.0 756 0.8134 0.8826 0.8623
0.0843 37.0 777 0.8141 0.8826 0.8637
0.0768 38.0 798 0.8157 0.8826 0.8616
0.0765 39.0 819 0.8183 0.8808 0.8621
0.0685 40.0 840 0.8139 0.8808 0.8628
0.0696 41.0 861 0.8149 0.8808 0.8631
0.0747 42.0 882 0.8144 0.8843 0.8655
0.0709 43.0 903 0.8136 0.8843 0.8655
0.0666 44.0 924 0.8140 0.8843 0.8661
0.071 45.0 945 0.8123 0.8808 0.8634
0.0682 46.0 966 0.8137 0.8843 0.8661
0.0743 47.0 987 0.8119 0.8843 0.8661
0.069 48.0 1008 0.8113 0.8843 0.8661
0.0624 49.0 1029 0.8119 0.8843 0.8655
0.0713 50.0 1050 0.8121 0.8843 0.8655

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.