distilbert-base-uncased-finetuned-as_sentences_fewshot

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0227
  • Accuracy: 0.9933
  • F1: 0.9933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6953 1.0 11 0.6832 0.6267 0.5993
0.6562 2.0 22 0.5071 0.9267 0.9268
0.4346 3.0 33 0.1365 0.9933 0.9933
0.1714 4.0 44 0.0566 0.9933 0.9933
0.1125 5.0 55 0.0234 1.0 1.0
0.0897 6.0 66 0.0264 0.9933 0.9933
0.0487 7.0 77 0.0465 0.9867 0.9867
0.0401 8.0 88 0.0082 1.0 1.0
0.0364 9.0 99 0.0273 0.9933 0.9933
0.0237 10.0 110 0.0163 0.9933 0.9933
0.0209 11.0 121 0.0044 1.0 1.0
0.0196 12.0 132 0.0056 1.0 1.0
0.0198 13.0 143 0.0059 1.0 1.0
0.0047 14.0 154 0.0063 1.0 1.0
0.0157 15.0 165 0.0115 0.9933 0.9933
0.0142 16.0 176 0.0116 0.9933 0.9933
0.0035 17.0 187 0.0111 0.9933 0.9933
0.0028 18.0 198 0.0114 0.9933 0.9933
0.0023 19.0 209 0.0103 0.9933 0.9933
0.0019 20.0 220 0.0102 0.9933 0.9933
0.0016 21.0 231 0.0117 0.9933 0.9933
0.0016 22.0 242 0.0103 0.9933 0.9933
0.0014 23.0 253 0.0072 0.9933 0.9933
0.0014 24.0 264 0.0059 0.9933 0.9933
0.0013 25.0 275 0.0071 0.9933 0.9933
0.0012 26.0 286 0.0079 0.9933 0.9933
0.0012 27.0 297 0.0076 0.9933 0.9933
0.0011 28.0 308 0.0076 0.9933 0.9933
0.001 29.0 319 0.0085 0.9933 0.9933
0.0009 30.0 330 0.0088 0.9933 0.9933
0.001 31.0 341 0.0089 0.9933 0.9933
0.0009 32.0 352 0.0092 0.9933 0.9933
0.0009 33.0 363 0.0091 0.9933 0.9933
0.0008 34.0 374 0.0100 0.9933 0.9933
0.0021 35.0 385 0.0312 0.9933 0.9933
0.0008 36.0 396 0.0340 0.9933 0.9933
0.0009 37.0 407 0.0313 0.9933 0.9933
0.0008 38.0 418 0.0278 0.9933 0.9933
0.0008 39.0 429 0.0246 0.9933 0.9933
0.0008 40.0 440 0.0226 0.9933 0.9933
0.0007 41.0 451 0.0212 0.9933 0.9933
0.0007 42.0 462 0.0200 0.9933 0.9933
0.0007 43.0 473 0.0241 0.9933 0.9933
0.0007 44.0 484 0.0249 0.9933 0.9933
0.0007 45.0 495 0.0244 0.9933 0.9933
0.0007 46.0 506 0.0238 0.9933 0.9933
0.0007 47.0 517 0.0234 0.9933 0.9933
0.0006 48.0 528 0.0230 0.9933 0.9933
0.0007 49.0 539 0.0227 0.9933 0.9933
0.0007 50.0 550 0.0227 0.9933 0.9933

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.