distilbert-base-uncased-finetuned-as_sentences

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0627
  • Accuracy: 0.9733
  • F1: 0.9733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6987 1.0 11 0.6958 0.46 0.3025
0.6851 2.0 22 0.6715 0.5667 0.4954
0.6315 3.0 33 0.4515 0.88 0.8791
0.4086 4.0 44 0.1662 0.96 0.9599
0.136 5.0 55 0.0857 0.9667 0.9666
0.0955 6.0 66 0.0661 0.9733 0.9733
0.022 7.0 77 0.0569 0.9667 0.9666
0.0272 8.0 88 0.0626 0.9667 0.9666
0.0346 9.0 99 0.0818 0.9667 0.9666
0.0157 10.0 110 0.0649 0.9667 0.9666
0.0232 11.0 121 0.1416 0.9533 0.9531
0.0202 12.0 132 0.0652 0.9733 0.9733
0.0069 13.0 143 0.0764 0.96 0.9599
0.0032 14.0 154 0.0842 0.9667 0.9666
0.0052 15.0 165 0.0697 0.9667 0.9666
0.0028 16.0 176 0.0773 0.9667 0.9666
0.0066 17.0 187 0.0809 0.9667 0.9667
0.0022 18.0 198 0.0569 0.9667 0.9666
0.002 19.0 209 0.0537 0.9733 0.9733
0.0016 20.0 220 0.0502 0.9733 0.9733
0.0015 21.0 231 0.0460 0.9733 0.9733
0.0013 22.0 242 0.0451 0.9733 0.9733
0.0013 23.0 253 0.0448 0.9733 0.9733
0.0012 24.0 264 0.0450 0.9733 0.9733
0.0012 25.0 275 0.0457 0.9733 0.9733
0.0011 26.0 286 0.0465 0.9733 0.9733
0.0011 27.0 297 0.0466 0.9733 0.9733
0.001 28.0 308 0.0613 0.9667 0.9666
0.001 29.0 319 0.0658 0.9667 0.9666
0.0009 30.0 330 0.0674 0.9667 0.9666
0.0008 31.0 341 0.0693 0.9667 0.9666
0.0009 32.0 352 0.0711 0.9667 0.9666
0.0008 33.0 363 0.0718 0.9667 0.9666
0.0028 34.0 374 0.0824 0.9667 0.9667
0.0011 35.0 385 0.0884 0.9667 0.9666
0.0008 36.0 396 0.1060 0.9667 0.9666
0.0009 37.0 407 0.0875 0.96 0.9599
0.0015 38.0 418 0.0623 0.9667 0.9666
0.0007 39.0 429 0.0610 0.9733 0.9733
0.0007 40.0 440 0.0614 0.9733 0.9733
0.0007 41.0 451 0.0617 0.9733 0.9733
0.0007 42.0 462 0.0618 0.9733 0.9733
0.0006 43.0 473 0.0620 0.9733 0.9733
0.0006 44.0 484 0.0621 0.9733 0.9733
0.0006 45.0 495 0.0622 0.9733 0.9733
0.0006 46.0 506 0.0624 0.9733 0.9733
0.0006 47.0 517 0.0625 0.9733 0.9733
0.0006 48.0 528 0.0626 0.9733 0.9733
0.0006 49.0 539 0.0627 0.9733 0.9733
0.0006 50.0 550 0.0627 0.9733 0.9733

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
52
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using sarahflan/distilbert-base-uncased-finetuned-AS_sentences 1