Sarah Tariq
End of training
13616b4 verified
|
raw
history blame
5.06 kB
metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-summarization-zero-shot-headers-and-better-prompt-base-enriched
    results: []

t5-summarization-zero-shot-headers-and-better-prompt-base-enriched

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3582
  • Rouge: {'rouge1': 0.3973, 'rouge2': 0.1803, 'rougeL': 0.1995, 'rougeLsum': 0.1995}
  • Bert Score: 0.8772
  • Bleurt 20: -0.7678
  • Gen Len: 13.355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge Bert Score Bleurt 20 Gen Len
2.188 1.0 601 2.1003 {'rouge1': 0.4472, 'rouge2': 0.1969, 'rougeL': 0.1958, 'rougeLsum': 0.1958} 0.8766 -0.805 14.265
1.8197 2.0 1202 1.9668 {'rouge1': 0.4259, 'rouge2': 0.1977, 'rougeL': 0.2091, 'rougeLsum': 0.2091} 0.8803 -0.7854 13.395
1.616 3.0 1803 1.9279 {'rouge1': 0.4209, 'rouge2': 0.1984, 'rougeL': 0.2069, 'rougeLsum': 0.2069} 0.8788 -0.7915 13.385
1.4174 4.0 2404 1.9601 {'rouge1': 0.4294, 'rouge2': 0.2009, 'rougeL': 0.2098, 'rougeLsum': 0.2098} 0.8796 -0.7453 13.745
1.2073 5.0 3005 1.9690 {'rouge1': 0.3801, 'rouge2': 0.1813, 'rougeL': 0.2045, 'rougeLsum': 0.2045} 0.8793 -0.8024 12.63
0.978 6.0 3606 2.1024 {'rouge1': 0.4035, 'rouge2': 0.1887, 'rougeL': 0.2067, 'rougeLsum': 0.2067} 0.8802 -0.7427 13.08
0.8994 7.0 4207 2.1300 {'rouge1': 0.4209, 'rouge2': 0.1962, 'rougeL': 0.2063, 'rougeLsum': 0.2063} 0.8821 -0.7351 13.315
0.8133 8.0 4808 2.2183 {'rouge1': 0.4053, 'rouge2': 0.1857, 'rougeL': 0.2083, 'rougeLsum': 0.2083} 0.8822 -0.7597 13.105
0.6993 9.0 5409 2.3794 {'rouge1': 0.4158, 'rouge2': 0.1926, 'rougeL': 0.2056, 'rougeLsum': 0.2056} 0.8789 -0.762 13.73
0.7033 10.0 6010 2.4450 {'rouge1': 0.4119, 'rouge2': 0.1928, 'rougeL': 0.2059, 'rougeLsum': 0.2059} 0.8804 -0.7611 13.165
0.5367 11.0 6611 2.6166 {'rouge1': 0.3886, 'rouge2': 0.1776, 'rougeL': 0.1961, 'rougeLsum': 0.1961} 0.8795 -0.8055 12.925
0.538 12.0 7212 2.6617 {'rouge1': 0.3971, 'rouge2': 0.1762, 'rougeL': 0.1942, 'rougeLsum': 0.1942} 0.878 -0.7797 13.135
0.5359 13.0 7813 2.8059 {'rouge1': 0.4188, 'rouge2': 0.2008, 'rougeL': 0.209, 'rougeLsum': 0.209} 0.8808 -0.7481 13.445
0.4019 14.0 8414 3.0293 {'rouge1': 0.3901, 'rouge2': 0.1723, 'rougeL': 0.1972, 'rougeLsum': 0.1972} 0.8765 -0.7554 13.135
0.3585 15.0 9015 3.0459 {'rouge1': 0.405, 'rouge2': 0.1843, 'rougeL': 0.2023, 'rougeLsum': 0.2023} 0.8789 -0.7381 13.38
0.3966 16.0 9616 3.0934 {'rouge1': 0.392, 'rouge2': 0.176, 'rougeL': 0.1879, 'rougeLsum': 0.1879} 0.8763 -0.7684 13.18
0.331 17.0 10217 3.1878 {'rouge1': 0.406, 'rouge2': 0.1828, 'rougeL': 0.1975, 'rougeLsum': 0.1975} 0.8771 -0.7609 13.47
0.3703 18.0 10818 3.2429 {'rouge1': 0.4032, 'rouge2': 0.1798, 'rougeL': 0.197, 'rougeLsum': 0.197} 0.8773 -0.7613 13.465
0.2751 19.0 11419 3.3337 {'rouge1': 0.3983, 'rouge2': 0.1772, 'rougeL': 0.2009, 'rougeLsum': 0.2009} 0.8778 -0.7595 13.38
0.2926 20.0 12020 3.3582 {'rouge1': 0.3973, 'rouge2': 0.1803, 'rougeL': 0.1995, 'rougeLsum': 0.1995} 0.8772 -0.7678 13.355

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0