|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-finetuned-samsum-en |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 46.8825 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-finetuned-samsum-en |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3676 |
|
- Rouge1: 46.8825 |
|
- Rouge2: 22.0923 |
|
- Rougel: 39.7249 |
|
- Rougelsum: 42.9187 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 0.5172 | 1.0 | 300 | 2.1613 | 47.4152 | 22.8106 | 39.93 | 43.3639 | |
|
| 0.3627 | 2.0 | 600 | 2.2771 | 47.2676 | 22.6325 | 40.1345 | 43.19 | |
|
| 0.2466 | 3.0 | 900 | 2.3676 | 46.8825 | 22.0923 | 39.7249 | 42.9187 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|