Visualize in Weights & Biases

bert-fraud-classification-test-mass

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3963
  • F1: 0.8194
  • Precision: 0.8445
  • Val Accuracy: 0.8375

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 44
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 88
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Val Accuracy
0.5197 0.1743 40 0.5468 0.7488 0.6907 0.7459
0.5208 0.3486 80 0.4667 0.7687 0.7890 0.7911
0.4235 0.5229 120 0.4351 0.7986 0.7898 0.8113
0.404 0.6972 160 0.4577 0.7972 0.7751 0.8066
0.3736 0.8715 200 0.4274 0.7914 0.8775 0.8240
0.419 1.0458 240 0.4058 0.7912 0.8737 0.8232
0.2701 1.2200 280 0.4075 0.8124 0.8393 0.8316
0.4345 1.3943 320 0.4246 0.8110 0.8088 0.8244
0.3258 1.5686 360 0.4023 0.7992 0.8788 0.8294
0.3938 1.7429 400 0.3945 0.8174 0.8447 0.8361
0.2529 1.9172 440 0.3963 0.8194 0.8445 0.8375

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
5
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sandeshrajx/bert-fraud-classification-test-mass

Finetuned
(1632)
this model
Finetunes
1 model