Visualize in Weights & Biases Visualize in Weights & Biases

bert-fraud-classification-test

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3850
  • F1: 0.7886
  • Precision: 0.8400
  • Val Accuracy: 0.8429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 44
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 88
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Val Accuracy
0.5784 0.1386 40 0.4995 0.6845 0.8251 0.7873
0.4545 0.2773 80 0.4295 0.7430 0.8504 0.8200
0.4566 0.4159 120 0.4116 0.7564 0.8483 0.8266
0.4468 0.5546 160 0.4149 0.7366 0.8827 0.8217
0.3454 0.6932 200 0.4062 0.7442 0.8812 0.8254
0.3333 0.8319 240 0.4046 0.7475 0.8993 0.8296
0.4618 0.9705 280 0.3973 0.7797 0.8279 0.8358
0.3581 1.1092 320 0.3869 0.7843 0.8431 0.8410
0.3946 1.2478 360 0.3869 0.7823 0.8471 0.8405
0.3263 1.3865 400 0.3875 0.7850 0.8379 0.8405
0.31 1.5251 440 0.3907 0.7721 0.8835 0.8404
0.2547 1.6638 480 0.3822 0.7855 0.8561 0.8437
0.2613 1.8024 520 0.3886 0.7883 0.8346 0.8418
0.3142 1.9411 560 0.3850 0.7886 0.8400 0.8429

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
1
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sandeshrajx/bert-fraud-classification-test

Finetuned
(1632)
this model