samuellimabraz's picture
End of training
f9d2f34 verified
metadata
base_model: google-t5/t5-small
datasets:
  - Andyrasika/TweetSumm-tuned
library_name: peft
license: apache-2.0
metrics:
  - rouge
  - f1
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: t5-small-LoRA-TweetSumm-1724701402
    results:
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: Andyrasika/TweetSumm-tuned
          type: Andyrasika/TweetSumm-tuned
        metrics:
          - type: rouge
            value: 0.4387
            name: Rouge1
          - type: f1
            value: 0.8896
            name: F1
          - type: precision
            value: 0.8881
            name: Precision
          - type: recall
            value: 0.8913
            name: Recall

t5-small-LoRA-TweetSumm-1724701402

This model is a fine-tuned version of google-t5/t5-small on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0811
  • Rouge1: 0.4387
  • Rouge2: 0.196
  • Rougel: 0.3605
  • Rougelsum: 0.4055
  • Gen Len: 49.5909
  • F1: 0.8896
  • Precision: 0.8881
  • Recall: 0.8913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len F1 Precision Recall
2.3972 1.0 110 2.1384 0.4219 0.1801 0.3545 0.3925 49.9818 0.8833 0.8806 0.8861
2.2593 2.0 220 2.0982 0.4125 0.1843 0.3448 0.3837 49.9091 0.8853 0.8822 0.8886
1.9318 3.0 330 2.0811 0.4387 0.196 0.3605 0.4055 49.5909 0.8896 0.8881 0.8913

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1