|
--- |
|
base_model: google-t5/t5-base |
|
datasets: |
|
- Andyrasika/TweetSumm-tuned |
|
library_name: peft |
|
license: apache-2.0 |
|
metrics: |
|
- rouge |
|
- f1 |
|
- precision |
|
- recall |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: t5-base-ia3-finetune-tweetsumm-1724827331 |
|
results: |
|
- task: |
|
type: summarization |
|
name: Summarization |
|
dataset: |
|
name: Andyrasika/TweetSumm-tuned |
|
type: Andyrasika/TweetSumm-tuned |
|
metrics: |
|
- type: rouge |
|
value: 0.4407 |
|
name: Rouge1 |
|
- type: f1 |
|
value: 0.8906 |
|
name: F1 |
|
- type: precision |
|
value: 0.8894 |
|
name: Precision |
|
- type: recall |
|
value: 0.8921 |
|
name: Recall |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-ia3-finetune-tweetsumm-1724827331 |
|
|
|
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co./google-t5/t5-base) on the Andyrasika/TweetSumm-tuned dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8276 |
|
- Rouge1: 0.4407 |
|
- Rouge2: 0.1997 |
|
- Rougel: 0.3672 |
|
- Rougelsum: 0.4075 |
|
- Gen Len: 49.5727 |
|
- F1: 0.8906 |
|
- Precision: 0.8894 |
|
- Recall: 0.8921 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:| |
|
| 2.2511 | 1.0 | 879 | 1.9364 | 0.4398 | 0.1855 | 0.3668 | 0.411 | 49.5182 | 0.8883 | 0.8875 | 0.8892 | |
|
| 1.4557 | 2.0 | 1758 | 1.8611 | 0.4491 | 0.2031 | 0.3721 | 0.4148 | 49.6091 | 0.8901 | 0.8889 | 0.8915 | |
|
| 1.8149 | 3.0 | 2637 | 1.8386 | 0.4436 | 0.2001 | 0.3707 | 0.4092 | 49.5636 | 0.8905 | 0.889 | 0.8923 | |
|
| 2.7192 | 4.0 | 3516 | 1.8271 | 0.4366 | 0.1966 | 0.3643 | 0.4041 | 49.6091 | 0.8897 | 0.8878 | 0.8917 | |
|
| 1.7838 | 5.0 | 4395 | 1.8276 | 0.4407 | 0.1997 | 0.3672 | 0.4075 | 49.5727 | 0.8906 | 0.8894 | 0.8921 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.1.dev0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |