samuellimabraz's picture
End of training
2d37a42 verified
metadata
license: apache-2.0
base_model: google-t5/t5-base
tags:
  - generated_from_trainer
datasets:
  - Andyrasika/TweetSumm-tuned
metrics:
  - rouge
  - f1
  - precision
  - recall
model-index:
  - name: t5-base-Full-TweetSumm-1724683206
    results:
      - task:
          name: Summarization
          type: summarization
        dataset:
          name: Andyrasika/TweetSumm-tuned
          type: Andyrasika/TweetSumm-tuned
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4709
          - name: F1
            type: f1
            value: 0.8952
          - name: Precision
            type: precision
            value: 0.8934
          - name: Recall
            type: recall
            value: 0.8971

t5-base-Full-TweetSumm-1724683206

This model is a fine-tuned version of google-t5/t5-base on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8697
  • Rouge1: 0.4709
  • Rouge2: 0.2223
  • Rougel: 0.3999
  • Rougelsum: 0.4391
  • Gen Len: 41.8455
  • F1: 0.8952
  • Precision: 0.8934
  • Recall: 0.8971

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len F1 Precision Recall
2.2928 1.0 220 1.8094 0.466 0.2146 0.3912 0.4301 41.9182 0.891 0.8891 0.8931
1.2939 2.0 440 1.7929 0.4605 0.2125 0.3897 0.4259 42.0 0.8928 0.8914 0.8944
0.7227 3.0 660 1.8697 0.4709 0.2223 0.3999 0.4391 41.8455 0.8952 0.8934 0.8971

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1