finetuned-clothes
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the clothes_simplifiedv2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2225
- Accuracy: 0.9417
Model description
This model classifies clothes category based on the given image.
Intended uses
You can use it in a jupyter notebook:
from PIL import Image
import requests
url = 'insert image url here'
image = Image.open(requests.get(url, stream=True).raw)
from transformers import AutoModelForImageClassification, AutoImageProcessor
repo_name = "samokosik/finetuned-clothes"
image_processor = AutoImageProcessor.from_pretrained(repo_name)
model = AutoModelForImageClassification.from_pretrained(repo_name)
encoding = image_processor(image.convert("RGB"), return_tensors="pt")
print(encoding.pixel_values.shape)
import torch
with torch.no_grad():
outputs = model(**encoding)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
Limitations
Due to lack of available data, we support only these categories: hat, longsleeve, outswear, pants, shoes, shorts, shortsleve.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7725 | 0.2058 | 100 | 0.7008 | 0.8178 |
0.5535 | 0.4115 | 200 | 0.4494 | 0.8994 |
0.4334 | 0.6173 | 300 | 0.3649 | 0.9169 |
0.3921 | 0.8230 | 400 | 0.3085 | 0.9184 |
0.3695 | 1.0288 | 500 | 0.3091 | 0.9184 |
0.2634 | 1.2346 | 600 | 0.3339 | 0.9082 |
0.4788 | 1.4403 | 700 | 0.2827 | 0.9257 |
0.3337 | 1.6461 | 800 | 0.2499 | 0.9344 |
0.34 | 1.8519 | 900 | 0.2586 | 0.9315 |
0.2424 | 2.0576 | 1000 | 0.2248 | 0.9402 |
0.1559 | 2.2634 | 1100 | 0.2333 | 0.9344 |
0.351 | 2.4691 | 1200 | 0.2495 | 0.9359 |
0.2206 | 2.6749 | 1300 | 0.2622 | 0.9242 |
0.3814 | 2.8807 | 1400 | 0.3138 | 0.9155 |
0.2141 | 3.0864 | 1500 | 0.2613 | 0.9315 |
0.112 | 3.2922 | 1600 | 0.2266 | 0.9402 |
0.0631 | 3.4979 | 1700 | 0.2255 | 0.9402 |
0.1986 | 3.7037 | 1800 | 0.2225 | 0.9417 |
0.2345 | 3.9095 | 1900 | 0.2235 | 0.9373 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
Training dataset
This model was trained on the following dataset: https://huggingface.co./datasets/samokosik/clothes_simplifiedv2
- Downloads last month
- 38
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for samokosik/finetuned-clothes
Base model
google/vit-base-patch16-224-in21k