sam1120's picture
update model card README.md
da620b1
|
raw
history blame
3.25 kB
metadata
license: other
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: parking-utcustom-train-SF-RGBD-b0_4
    results: []

parking-utcustom-train-SF-RGBD-b0_4

This model is a fine-tuned version of nvidia/mit-b0 on the sam1120/parking-utcustom-train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0255
  • Mean Iou: 1.0
  • Mean Accuracy: 1.0
  • Overall Accuracy: 1.0
  • Accuracy Unlabeled: nan
  • Accuracy Parking: nan
  • Accuracy Unparking: 1.0
  • Iou Unlabeled: nan
  • Iou Parking: nan
  • Iou Unparking: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Parking Accuracy Unparking Iou Unlabeled Iou Parking Iou Unparking
0.544 20.0 20 0.4305 1.0 1.0 1.0 nan nan 1.0 nan nan 1.0
0.2353 40.0 40 0.1342 1.0 1.0 1.0 nan nan 1.0 nan nan 1.0
0.162 60.0 60 0.0678 1.0 1.0 1.0 nan nan 1.0 nan nan 1.0
0.1243 80.0 80 0.0400 1.0 1.0 1.0 nan nan 1.0 nan nan 1.0
0.0952 100.0 100 0.0226 1.0 1.0 1.0 nan nan 1.0 nan nan 1.0
0.0751 120.0 120 0.0235 1.0 1.0 1.0 nan nan 1.0 nan nan 1.0
0.0644 140.0 140 0.0255 1.0 1.0 1.0 nan nan 1.0 nan nan 1.0

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3