sf_model_e5 / README.md
James
Update README.md
4946246
metadata
tags:
  - mteb
model-index:
  - name: sf_model_e5
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 70.85074626865672
          - type: ap
            value: 33.779217850079206
          - type: f1
            value: 64.96977487239377
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 91.80945
          - type: ap
            value: 88.22978189506895
          - type: f1
            value: 91.7858219911604
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 48.94200000000001
          - type: f1
            value: 47.911934405973895
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.616
          - type: map_at_10
            value: 55.938
          - type: map_at_100
            value: 56.552
          - type: map_at_1000
            value: 56.556
          - type: map_at_3
            value: 51.754
          - type: map_at_5
            value: 54.623999999999995
          - type: mrr_at_1
            value: 40.967
          - type: mrr_at_10
            value: 56.452999999999996
          - type: mrr_at_100
            value: 57.053
          - type: mrr_at_1000
            value: 57.057
          - type: mrr_at_3
            value: 52.312000000000005
          - type: mrr_at_5
            value: 55.1
          - type: ndcg_at_1
            value: 39.616
          - type: ndcg_at_10
            value: 64.067
          - type: ndcg_at_100
            value: 66.384
          - type: ndcg_at_1000
            value: 66.468
          - type: ndcg_at_3
            value: 55.74
          - type: ndcg_at_5
            value: 60.889
          - type: precision_at_1
            value: 39.616
          - type: precision_at_10
            value: 8.953999999999999
          - type: precision_at_100
            value: 0.9900000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 22.428
          - type: precision_at_5
            value: 15.946
          - type: recall_at_1
            value: 39.616
          - type: recall_at_10
            value: 89.545
          - type: recall_at_100
            value: 99.004
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 67.283
          - type: recall_at_5
            value: 79.73
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 48.72923923743124
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 42.87449955203238
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 64.3214434754065
          - type: mrr
            value: 77.87879787187265
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 88.82418607751953
          - type: cos_sim_spearman
            value: 86.74535004562274
          - type: euclidean_pearson
            value: 86.58792166831103
          - type: euclidean_spearman
            value: 86.74535004562274
          - type: manhattan_pearson
            value: 86.23957813056677
          - type: manhattan_spearman
            value: 86.41522204150452
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 84.61363636363636
          - type: f1
            value: 83.98373241136187
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 39.73148995791471
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 37.23723038699733
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.217
          - type: map_at_10
            value: 43.453
          - type: map_at_100
            value: 45.038
          - type: map_at_1000
            value: 45.162
          - type: map_at_3
            value: 39.589
          - type: map_at_5
            value: 41.697
          - type: mrr_at_1
            value: 39.628
          - type: mrr_at_10
            value: 49.698
          - type: mrr_at_100
            value: 50.44
          - type: mrr_at_1000
            value: 50.482000000000006
          - type: mrr_at_3
            value: 46.781
          - type: mrr_at_5
            value: 48.548
          - type: ndcg_at_1
            value: 39.628
          - type: ndcg_at_10
            value: 50.158
          - type: ndcg_at_100
            value: 55.687
          - type: ndcg_at_1000
            value: 57.499
          - type: ndcg_at_3
            value: 44.594
          - type: ndcg_at_5
            value: 47.198
          - type: precision_at_1
            value: 39.628
          - type: precision_at_10
            value: 9.828000000000001
          - type: precision_at_100
            value: 1.591
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 21.507
          - type: precision_at_5
            value: 15.765
          - type: recall_at_1
            value: 32.217
          - type: recall_at_10
            value: 62.717999999999996
          - type: recall_at_100
            value: 85.992
          - type: recall_at_1000
            value: 97.271
          - type: recall_at_3
            value: 46.694
          - type: recall_at_5
            value: 53.952
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.862000000000002
          - type: map_at_10
            value: 41.287
          - type: map_at_100
            value: 42.526
          - type: map_at_1000
            value: 42.653999999999996
          - type: map_at_3
            value: 38.055
          - type: map_at_5
            value: 40.022000000000006
          - type: mrr_at_1
            value: 38.408
          - type: mrr_at_10
            value: 46.943
          - type: mrr_at_100
            value: 47.597
          - type: mrr_at_1000
            value: 47.64
          - type: mrr_at_3
            value: 44.607
          - type: mrr_at_5
            value: 46.079
          - type: ndcg_at_1
            value: 38.408
          - type: ndcg_at_10
            value: 46.936
          - type: ndcg_at_100
            value: 51.307
          - type: ndcg_at_1000
            value: 53.312000000000005
          - type: ndcg_at_3
            value: 42.579
          - type: ndcg_at_5
            value: 44.877
          - type: precision_at_1
            value: 38.408
          - type: precision_at_10
            value: 8.885
          - type: precision_at_100
            value: 1.4449999999999998
          - type: precision_at_1000
            value: 0.192
          - type: precision_at_3
            value: 20.616
          - type: precision_at_5
            value: 14.841
          - type: recall_at_1
            value: 30.862000000000002
          - type: recall_at_10
            value: 56.994
          - type: recall_at_100
            value: 75.347
          - type: recall_at_1000
            value: 87.911
          - type: recall_at_3
            value: 44.230000000000004
          - type: recall_at_5
            value: 50.625
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.076
          - type: map_at_10
            value: 52.535
          - type: map_at_100
            value: 53.537
          - type: map_at_1000
            value: 53.591
          - type: map_at_3
            value: 48.961
          - type: map_at_5
            value: 50.96000000000001
          - type: mrr_at_1
            value: 44.765
          - type: mrr_at_10
            value: 55.615
          - type: mrr_at_100
            value: 56.24
          - type: mrr_at_1000
            value: 56.264
          - type: mrr_at_3
            value: 52.925999999999995
          - type: mrr_at_5
            value: 54.493
          - type: ndcg_at_1
            value: 44.765
          - type: ndcg_at_10
            value: 58.777
          - type: ndcg_at_100
            value: 62.574
          - type: ndcg_at_1000
            value: 63.624
          - type: ndcg_at_3
            value: 52.81
          - type: ndcg_at_5
            value: 55.657999999999994
          - type: precision_at_1
            value: 44.765
          - type: precision_at_10
            value: 9.693
          - type: precision_at_100
            value: 1.248
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 23.866
          - type: precision_at_5
            value: 16.489
          - type: recall_at_1
            value: 39.076
          - type: recall_at_10
            value: 74.01299999999999
          - type: recall_at_100
            value: 90.363
          - type: recall_at_1000
            value: 97.782
          - type: recall_at_3
            value: 58.056
          - type: recall_at_5
            value: 65.029
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.357000000000003
          - type: map_at_10
            value: 35.492000000000004
          - type: map_at_100
            value: 36.504999999999995
          - type: map_at_1000
            value: 36.578
          - type: map_at_3
            value: 32.696999999999996
          - type: map_at_5
            value: 34.388999999999996
          - type: mrr_at_1
            value: 28.136
          - type: mrr_at_10
            value: 37.383
          - type: mrr_at_100
            value: 38.271
          - type: mrr_at_1000
            value: 38.324999999999996
          - type: mrr_at_3
            value: 34.782999999999994
          - type: mrr_at_5
            value: 36.416
          - type: ndcg_at_1
            value: 28.136
          - type: ndcg_at_10
            value: 40.741
          - type: ndcg_at_100
            value: 45.803
          - type: ndcg_at_1000
            value: 47.637
          - type: ndcg_at_3
            value: 35.412
          - type: ndcg_at_5
            value: 38.251000000000005
          - type: precision_at_1
            value: 28.136
          - type: precision_at_10
            value: 6.315999999999999
          - type: precision_at_100
            value: 0.931
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 15.254000000000001
          - type: precision_at_5
            value: 10.757
          - type: recall_at_1
            value: 26.357000000000003
          - type: recall_at_10
            value: 55.021
          - type: recall_at_100
            value: 78.501
          - type: recall_at_1000
            value: 92.133
          - type: recall_at_3
            value: 40.798
          - type: recall_at_5
            value: 47.591
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.302
          - type: map_at_10
            value: 26.365
          - type: map_at_100
            value: 27.581
          - type: map_at_1000
            value: 27.705999999999996
          - type: map_at_3
            value: 23.682
          - type: map_at_5
            value: 25.304
          - type: mrr_at_1
            value: 21.891
          - type: mrr_at_10
            value: 31.227
          - type: mrr_at_100
            value: 32.22
          - type: mrr_at_1000
            value: 32.282
          - type: mrr_at_3
            value: 28.711
          - type: mrr_at_5
            value: 30.314999999999998
          - type: ndcg_at_1
            value: 21.891
          - type: ndcg_at_10
            value: 31.965
          - type: ndcg_at_100
            value: 37.869
          - type: ndcg_at_1000
            value: 40.642
          - type: ndcg_at_3
            value: 27.184
          - type: ndcg_at_5
            value: 29.686
          - type: precision_at_1
            value: 21.891
          - type: precision_at_10
            value: 5.9830000000000005
          - type: precision_at_100
            value: 1.0250000000000001
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 13.391
          - type: precision_at_5
            value: 9.801
          - type: recall_at_1
            value: 17.302
          - type: recall_at_10
            value: 44.312000000000005
          - type: recall_at_100
            value: 70.274
          - type: recall_at_1000
            value: 89.709
          - type: recall_at_3
            value: 31.117
          - type: recall_at_5
            value: 37.511
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.404000000000003
          - type: map_at_10
            value: 40.571
          - type: map_at_100
            value: 42.049
          - type: map_at_1000
            value: 42.156
          - type: map_at_3
            value: 37.413000000000004
          - type: map_at_5
            value: 39.206
          - type: mrr_at_1
            value: 36.285000000000004
          - type: mrr_at_10
            value: 46.213
          - type: mrr_at_100
            value: 47.129
          - type: mrr_at_1000
            value: 47.168
          - type: mrr_at_3
            value: 43.84
          - type: mrr_at_5
            value: 45.226
          - type: ndcg_at_1
            value: 36.285000000000004
          - type: ndcg_at_10
            value: 46.809
          - type: ndcg_at_100
            value: 52.615
          - type: ndcg_at_1000
            value: 54.538
          - type: ndcg_at_3
            value: 41.91
          - type: ndcg_at_5
            value: 44.224999999999994
          - type: precision_at_1
            value: 36.285000000000004
          - type: precision_at_10
            value: 8.527
          - type: precision_at_100
            value: 1.3259999999999998
          - type: precision_at_1000
            value: 0.167
          - type: precision_at_3
            value: 20.083000000000002
          - type: precision_at_5
            value: 14.071
          - type: recall_at_1
            value: 29.404000000000003
          - type: recall_at_10
            value: 59.611999999999995
          - type: recall_at_100
            value: 83.383
          - type: recall_at_1000
            value: 95.703
          - type: recall_at_3
            value: 45.663
          - type: recall_at_5
            value: 51.971999999999994
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.317
          - type: map_at_10
            value: 35.217999999999996
          - type: map_at_100
            value: 36.665
          - type: map_at_1000
            value: 36.768
          - type: map_at_3
            value: 31.924000000000003
          - type: map_at_5
            value: 33.591
          - type: mrr_at_1
            value: 31.507
          - type: mrr_at_10
            value: 40.671
          - type: mrr_at_100
            value: 41.609
          - type: mrr_at_1000
            value: 41.657
          - type: mrr_at_3
            value: 38.261
          - type: mrr_at_5
            value: 39.431
          - type: ndcg_at_1
            value: 31.507
          - type: ndcg_at_10
            value: 41.375
          - type: ndcg_at_100
            value: 47.426
          - type: ndcg_at_1000
            value: 49.504
          - type: ndcg_at_3
            value: 35.989
          - type: ndcg_at_5
            value: 38.068000000000005
          - type: precision_at_1
            value: 31.507
          - type: precision_at_10
            value: 7.8420000000000005
          - type: precision_at_100
            value: 1.257
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 17.352
          - type: precision_at_5
            value: 12.328999999999999
          - type: recall_at_1
            value: 25.317
          - type: recall_at_10
            value: 54.254999999999995
          - type: recall_at_100
            value: 80.184
          - type: recall_at_1000
            value: 94.07
          - type: recall_at_3
            value: 39.117000000000004
          - type: recall_at_5
            value: 44.711
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.813000000000002
          - type: map_at_10
            value: 35.47183333333334
          - type: map_at_100
            value: 36.71775
          - type: map_at_1000
            value: 36.833000000000006
          - type: map_at_3
            value: 32.449916666666674
          - type: map_at_5
            value: 34.1235
          - type: mrr_at_1
            value: 30.766750000000005
          - type: mrr_at_10
            value: 39.77508333333334
          - type: mrr_at_100
            value: 40.64233333333333
          - type: mrr_at_1000
            value: 40.69658333333333
          - type: mrr_at_3
            value: 37.27349999999999
          - type: mrr_at_5
            value: 38.723416666666665
          - type: ndcg_at_1
            value: 30.766750000000005
          - type: ndcg_at_10
            value: 41.141416666666665
          - type: ndcg_at_100
            value: 46.42016666666666
          - type: ndcg_at_1000
            value: 48.61916666666667
          - type: ndcg_at_3
            value: 36.06883333333333
          - type: ndcg_at_5
            value: 38.43966666666666
          - type: precision_at_1
            value: 30.766750000000005
          - type: precision_at_10
            value: 7.340000000000001
          - type: precision_at_100
            value: 1.1796666666666666
          - type: precision_at_1000
            value: 0.15625
          - type: precision_at_3
            value: 16.763833333333334
          - type: precision_at_5
            value: 11.972166666666666
          - type: recall_at_1
            value: 25.813000000000002
          - type: recall_at_10
            value: 53.62741666666667
          - type: recall_at_100
            value: 76.70125000000002
          - type: recall_at_1000
            value: 91.85566666666666
          - type: recall_at_3
            value: 39.55075
          - type: recall_at_5
            value: 45.645250000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.249
          - type: map_at_10
            value: 31.095
          - type: map_at_100
            value: 32.056000000000004
          - type: map_at_1000
            value: 32.163000000000004
          - type: map_at_3
            value: 29.275000000000002
          - type: map_at_5
            value: 30.333
          - type: mrr_at_1
            value: 26.687
          - type: mrr_at_10
            value: 34.122
          - type: mrr_at_100
            value: 34.958
          - type: mrr_at_1000
            value: 35.039
          - type: mrr_at_3
            value: 32.541
          - type: mrr_at_5
            value: 33.43
          - type: ndcg_at_1
            value: 26.687
          - type: ndcg_at_10
            value: 35.248000000000005
          - type: ndcg_at_100
            value: 39.933
          - type: ndcg_at_1000
            value: 42.616
          - type: ndcg_at_3
            value: 31.980999999999998
          - type: ndcg_at_5
            value: 33.583
          - type: precision_at_1
            value: 26.687
          - type: precision_at_10
            value: 5.445
          - type: precision_at_100
            value: 0.848
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 13.957
          - type: precision_at_5
            value: 9.479
          - type: recall_at_1
            value: 23.249
          - type: recall_at_10
            value: 45.005
          - type: recall_at_100
            value: 66.175
          - type: recall_at_1000
            value: 86.116
          - type: recall_at_3
            value: 36.03
          - type: recall_at_5
            value: 40.037
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.592
          - type: map_at_10
            value: 25.003999999999998
          - type: map_at_100
            value: 26.208
          - type: map_at_1000
            value: 26.333000000000002
          - type: map_at_3
            value: 22.479
          - type: map_at_5
            value: 23.712
          - type: mrr_at_1
            value: 21.37
          - type: mrr_at_10
            value: 28.951999999999998
          - type: mrr_at_100
            value: 29.915999999999997
          - type: mrr_at_1000
            value: 29.99
          - type: mrr_at_3
            value: 26.503
          - type: mrr_at_5
            value: 27.728
          - type: ndcg_at_1
            value: 21.37
          - type: ndcg_at_10
            value: 29.944
          - type: ndcg_at_100
            value: 35.632000000000005
          - type: ndcg_at_1000
            value: 38.393
          - type: ndcg_at_3
            value: 25.263999999999996
          - type: ndcg_at_5
            value: 27.115000000000002
          - type: precision_at_1
            value: 21.37
          - type: precision_at_10
            value: 5.568
          - type: precision_at_100
            value: 0.992
          - type: precision_at_1000
            value: 0.13999999999999999
          - type: precision_at_3
            value: 11.895
          - type: precision_at_5
            value: 8.61
          - type: recall_at_1
            value: 17.592
          - type: recall_at_10
            value: 40.976
          - type: recall_at_100
            value: 66.487
          - type: recall_at_1000
            value: 85.954
          - type: recall_at_3
            value: 27.797
          - type: recall_at_5
            value: 32.553
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.173000000000002
          - type: map_at_10
            value: 34.611999999999995
          - type: map_at_100
            value: 35.735
          - type: map_at_1000
            value: 35.842
          - type: map_at_3
            value: 31.345
          - type: map_at_5
            value: 33.123000000000005
          - type: mrr_at_1
            value: 29.570999999999998
          - type: mrr_at_10
            value: 38.775999999999996
          - type: mrr_at_100
            value: 39.621
          - type: mrr_at_1000
            value: 39.684000000000005
          - type: mrr_at_3
            value: 35.992000000000004
          - type: mrr_at_5
            value: 37.586999999999996
          - type: ndcg_at_1
            value: 29.570999999999998
          - type: ndcg_at_10
            value: 40.388000000000005
          - type: ndcg_at_100
            value: 45.59
          - type: ndcg_at_1000
            value: 47.948
          - type: ndcg_at_3
            value: 34.497
          - type: ndcg_at_5
            value: 37.201
          - type: precision_at_1
            value: 29.570999999999998
          - type: precision_at_10
            value: 6.931
          - type: precision_at_100
            value: 1.082
          - type: precision_at_1000
            value: 0.13999999999999999
          - type: precision_at_3
            value: 15.609
          - type: precision_at_5
            value: 11.286999999999999
          - type: recall_at_1
            value: 25.173000000000002
          - type: recall_at_10
            value: 53.949000000000005
          - type: recall_at_100
            value: 76.536
          - type: recall_at_1000
            value: 92.979
          - type: recall_at_3
            value: 37.987
          - type: recall_at_5
            value: 44.689
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.224
          - type: map_at_10
            value: 32.903
          - type: map_at_100
            value: 34.65
          - type: map_at_1000
            value: 34.873
          - type: map_at_3
            value: 29.673
          - type: map_at_5
            value: 31.361
          - type: mrr_at_1
            value: 30.435000000000002
          - type: mrr_at_10
            value: 38.677
          - type: mrr_at_100
            value: 39.805
          - type: mrr_at_1000
            value: 39.851
          - type: mrr_at_3
            value: 35.935
          - type: mrr_at_5
            value: 37.566
          - type: ndcg_at_1
            value: 30.435000000000002
          - type: ndcg_at_10
            value: 39.012
          - type: ndcg_at_100
            value: 45.553
          - type: ndcg_at_1000
            value: 47.919
          - type: ndcg_at_3
            value: 33.809
          - type: ndcg_at_5
            value: 36.120999999999995
          - type: precision_at_1
            value: 30.435000000000002
          - type: precision_at_10
            value: 7.628
          - type: precision_at_100
            value: 1.5810000000000002
          - type: precision_at_1000
            value: 0.243
          - type: precision_at_3
            value: 15.744
          - type: precision_at_5
            value: 11.66
          - type: recall_at_1
            value: 24.224
          - type: recall_at_10
            value: 50.009
          - type: recall_at_100
            value: 78.839
          - type: recall_at_1000
            value: 93.71300000000001
          - type: recall_at_3
            value: 35.512
          - type: recall_at_5
            value: 41.541
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.983
          - type: map_at_10
            value: 27.127000000000002
          - type: map_at_100
            value: 28.063
          - type: map_at_1000
            value: 28.17
          - type: map_at_3
            value: 24.306
          - type: map_at_5
            value: 25.784000000000002
          - type: mrr_at_1
            value: 20.518
          - type: mrr_at_10
            value: 29.024
          - type: mrr_at_100
            value: 29.902
          - type: mrr_at_1000
            value: 29.976999999999997
          - type: mrr_at_3
            value: 26.401999999999997
          - type: mrr_at_5
            value: 27.862
          - type: ndcg_at_1
            value: 20.518
          - type: ndcg_at_10
            value: 32.344
          - type: ndcg_at_100
            value: 37.053000000000004
          - type: ndcg_at_1000
            value: 39.798
          - type: ndcg_at_3
            value: 26.796999999999997
          - type: ndcg_at_5
            value: 29.293000000000003
          - type: precision_at_1
            value: 20.518
          - type: precision_at_10
            value: 5.434
          - type: precision_at_100
            value: 0.83
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 11.892
          - type: precision_at_5
            value: 8.577
          - type: recall_at_1
            value: 18.983
          - type: recall_at_10
            value: 46.665
          - type: recall_at_100
            value: 68.33399999999999
          - type: recall_at_1000
            value: 88.927
          - type: recall_at_3
            value: 31.608000000000004
          - type: recall_at_5
            value: 37.532
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 11.200000000000001
          - type: map_at_10
            value: 20.241999999999997
          - type: map_at_100
            value: 22.357
          - type: map_at_1000
            value: 22.556
          - type: map_at_3
            value: 16.564999999999998
          - type: map_at_5
            value: 18.443
          - type: mrr_at_1
            value: 25.277
          - type: mrr_at_10
            value: 37.582
          - type: mrr_at_100
            value: 38.525999999999996
          - type: mrr_at_1000
            value: 38.564
          - type: mrr_at_3
            value: 33.898
          - type: mrr_at_5
            value: 36.191
          - type: ndcg_at_1
            value: 25.277
          - type: ndcg_at_10
            value: 28.74
          - type: ndcg_at_100
            value: 36.665
          - type: ndcg_at_1000
            value: 40.08
          - type: ndcg_at_3
            value: 22.888
          - type: ndcg_at_5
            value: 25.081999999999997
          - type: precision_at_1
            value: 25.277
          - type: precision_at_10
            value: 9.251
          - type: precision_at_100
            value: 1.773
          - type: precision_at_1000
            value: 0.241
          - type: precision_at_3
            value: 17.329
          - type: precision_at_5
            value: 13.746
          - type: recall_at_1
            value: 11.200000000000001
          - type: recall_at_10
            value: 35.419
          - type: recall_at_100
            value: 62.41
          - type: recall_at_1000
            value: 81.467
          - type: recall_at_3
            value: 21.275
          - type: recall_at_5
            value: 27.201999999999998
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.396
          - type: map_at_10
            value: 20.735
          - type: map_at_100
            value: 30.098000000000003
          - type: map_at_1000
            value: 31.866
          - type: map_at_3
            value: 14.71
          - type: map_at_5
            value: 17.259
          - type: mrr_at_1
            value: 70.25
          - type: mrr_at_10
            value: 77.09700000000001
          - type: mrr_at_100
            value: 77.398
          - type: mrr_at_1000
            value: 77.40899999999999
          - type: mrr_at_3
            value: 75.542
          - type: mrr_at_5
            value: 76.354
          - type: ndcg_at_1
            value: 57.75
          - type: ndcg_at_10
            value: 42.509
          - type: ndcg_at_100
            value: 48.94
          - type: ndcg_at_1000
            value: 56.501000000000005
          - type: ndcg_at_3
            value: 46.827000000000005
          - type: ndcg_at_5
            value: 44.033
          - type: precision_at_1
            value: 70.25
          - type: precision_at_10
            value: 33.85
          - type: precision_at_100
            value: 11.373
          - type: precision_at_1000
            value: 2.136
          - type: precision_at_3
            value: 50.917
          - type: precision_at_5
            value: 42.8
          - type: recall_at_1
            value: 9.396
          - type: recall_at_10
            value: 26.472
          - type: recall_at_100
            value: 57.30800000000001
          - type: recall_at_1000
            value: 80.983
          - type: recall_at_3
            value: 15.859000000000002
          - type: recall_at_5
            value: 19.758
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 54.900000000000006
          - type: f1
            value: 48.14707395235448
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 66.369
          - type: map_at_10
            value: 76.708
          - type: map_at_100
            value: 76.981
          - type: map_at_1000
            value: 76.995
          - type: map_at_3
            value: 75.114
          - type: map_at_5
            value: 76.116
          - type: mrr_at_1
            value: 71.557
          - type: mrr_at_10
            value: 80.95
          - type: mrr_at_100
            value: 81.075
          - type: mrr_at_1000
            value: 81.07900000000001
          - type: mrr_at_3
            value: 79.728
          - type: mrr_at_5
            value: 80.522
          - type: ndcg_at_1
            value: 71.557
          - type: ndcg_at_10
            value: 81.381
          - type: ndcg_at_100
            value: 82.421
          - type: ndcg_at_1000
            value: 82.709
          - type: ndcg_at_3
            value: 78.671
          - type: ndcg_at_5
            value: 80.17
          - type: precision_at_1
            value: 71.557
          - type: precision_at_10
            value: 10.159
          - type: precision_at_100
            value: 1.089
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 30.668
          - type: precision_at_5
            value: 19.337
          - type: recall_at_1
            value: 66.369
          - type: recall_at_10
            value: 91.482
          - type: recall_at_100
            value: 95.848
          - type: recall_at_1000
            value: 97.749
          - type: recall_at_3
            value: 84.185
          - type: recall_at_5
            value: 87.908
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.902
          - type: map_at_10
            value: 34.554
          - type: map_at_100
            value: 36.632
          - type: map_at_1000
            value: 36.811
          - type: map_at_3
            value: 30.264000000000003
          - type: map_at_5
            value: 32.714999999999996
          - type: mrr_at_1
            value: 42.13
          - type: mrr_at_10
            value: 51.224000000000004
          - type: mrr_at_100
            value: 52.044999999999995
          - type: mrr_at_1000
            value: 52.075
          - type: mrr_at_3
            value: 48.842999999999996
          - type: mrr_at_5
            value: 50.108
          - type: ndcg_at_1
            value: 42.13
          - type: ndcg_at_10
            value: 42.643
          - type: ndcg_at_100
            value: 49.806
          - type: ndcg_at_1000
            value: 52.583
          - type: ndcg_at_3
            value: 38.927
          - type: ndcg_at_5
            value: 40.071
          - type: precision_at_1
            value: 42.13
          - type: precision_at_10
            value: 11.928999999999998
          - type: precision_at_100
            value: 1.931
          - type: precision_at_1000
            value: 0.243
          - type: precision_at_3
            value: 26.337
          - type: precision_at_5
            value: 19.29
          - type: recall_at_1
            value: 20.902
          - type: recall_at_10
            value: 49.527
          - type: recall_at_100
            value: 75.754
          - type: recall_at_1000
            value: 92.171
          - type: recall_at_3
            value: 35.024
          - type: recall_at_5
            value: 41.207
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.831
          - type: map_at_10
            value: 63.958999999999996
          - type: map_at_100
            value: 64.869
          - type: map_at_1000
            value: 64.924
          - type: map_at_3
            value: 60.25
          - type: map_at_5
            value: 62.572
          - type: mrr_at_1
            value: 79.662
          - type: mrr_at_10
            value: 85.57900000000001
          - type: mrr_at_100
            value: 85.744
          - type: mrr_at_1000
            value: 85.748
          - type: mrr_at_3
            value: 84.718
          - type: mrr_at_5
            value: 85.312
          - type: ndcg_at_1
            value: 79.662
          - type: ndcg_at_10
            value: 72.366
          - type: ndcg_at_100
            value: 75.42999999999999
          - type: ndcg_at_1000
            value: 76.469
          - type: ndcg_at_3
            value: 67.258
          - type: ndcg_at_5
            value: 70.14099999999999
          - type: precision_at_1
            value: 79.662
          - type: precision_at_10
            value: 15.254999999999999
          - type: precision_at_100
            value: 1.763
          - type: precision_at_1000
            value: 0.19
          - type: precision_at_3
            value: 43.358000000000004
          - type: precision_at_5
            value: 28.288999999999998
          - type: recall_at_1
            value: 39.831
          - type: recall_at_10
            value: 76.273
          - type: recall_at_100
            value: 88.163
          - type: recall_at_1000
            value: 95.017
          - type: recall_at_3
            value: 65.037
          - type: recall_at_5
            value: 70.722
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 93.13879999999999
          - type: ap
            value: 89.94638859649079
          - type: f1
            value: 93.13371537570421
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 21.482
          - type: map_at_10
            value: 33.635999999999996
          - type: map_at_100
            value: 34.792
          - type: map_at_1000
            value: 34.839999999999996
          - type: map_at_3
            value: 29.553
          - type: map_at_5
            value: 31.892
          - type: mrr_at_1
            value: 22.076999999999998
          - type: mrr_at_10
            value: 34.247
          - type: mrr_at_100
            value: 35.337
          - type: mrr_at_1000
            value: 35.38
          - type: mrr_at_3
            value: 30.208000000000002
          - type: mrr_at_5
            value: 32.554
          - type: ndcg_at_1
            value: 22.092
          - type: ndcg_at_10
            value: 40.657
          - type: ndcg_at_100
            value: 46.251999999999995
          - type: ndcg_at_1000
            value: 47.466
          - type: ndcg_at_3
            value: 32.353
          - type: ndcg_at_5
            value: 36.532
          - type: precision_at_1
            value: 22.092
          - type: precision_at_10
            value: 6.5040000000000004
          - type: precision_at_100
            value: 0.9329999999999999
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 13.719999999999999
          - type: precision_at_5
            value: 10.344000000000001
          - type: recall_at_1
            value: 21.482
          - type: recall_at_10
            value: 62.316
          - type: recall_at_100
            value: 88.283
          - type: recall_at_1000
            value: 97.554
          - type: recall_at_3
            value: 39.822
          - type: recall_at_5
            value: 49.805
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 93.63657090743274
          - type: f1
            value: 93.49355466580484
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 66.01459188326493
          - type: f1
            value: 48.48386472180784
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 73.49024882313383
          - type: f1
            value: 71.8750196914349
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 77.38063214525891
          - type: f1
            value: 76.87364042122763
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 34.30572302322684
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 32.18418556367587
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 32.268707296386154
          - type: mrr
            value: 33.481925531215055
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.586
          - type: map_at_10
            value: 14.954999999999998
          - type: map_at_100
            value: 19.03
          - type: map_at_1000
            value: 20.653
          - type: map_at_3
            value: 10.859
          - type: map_at_5
            value: 12.577
          - type: mrr_at_1
            value: 47.988
          - type: mrr_at_10
            value: 57.57
          - type: mrr_at_100
            value: 58.050000000000004
          - type: mrr_at_1000
            value: 58.083
          - type: mrr_at_3
            value: 55.212
          - type: mrr_at_5
            value: 56.713
          - type: ndcg_at_1
            value: 45.975
          - type: ndcg_at_10
            value: 38.432
          - type: ndcg_at_100
            value: 35.287
          - type: ndcg_at_1000
            value: 44.35
          - type: ndcg_at_3
            value: 43.077
          - type: ndcg_at_5
            value: 40.952
          - type: precision_at_1
            value: 47.368
          - type: precision_at_10
            value: 28.483000000000004
          - type: precision_at_100
            value: 8.882
          - type: precision_at_1000
            value: 2.217
          - type: precision_at_3
            value: 40.144000000000005
          - type: precision_at_5
            value: 35.17
          - type: recall_at_1
            value: 6.586
          - type: recall_at_10
            value: 19.688
          - type: recall_at_100
            value: 35.426
          - type: recall_at_1000
            value: 68.09100000000001
          - type: recall_at_3
            value: 12.234
          - type: recall_at_5
            value: 14.937000000000001
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.322000000000003
          - type: map_at_10
            value: 43.224000000000004
          - type: map_at_100
            value: 44.275999999999996
          - type: map_at_1000
            value: 44.308
          - type: map_at_3
            value: 38.239000000000004
          - type: map_at_5
            value: 41.244
          - type: mrr_at_1
            value: 31.025000000000002
          - type: mrr_at_10
            value: 45.635
          - type: mrr_at_100
            value: 46.425
          - type: mrr_at_1000
            value: 46.445
          - type: mrr_at_3
            value: 41.42
          - type: mrr_at_5
            value: 44.038
          - type: ndcg_at_1
            value: 30.997000000000003
          - type: ndcg_at_10
            value: 51.55499999999999
          - type: ndcg_at_100
            value: 55.964999999999996
          - type: ndcg_at_1000
            value: 56.657000000000004
          - type: ndcg_at_3
            value: 42.185
          - type: ndcg_at_5
            value: 47.229
          - type: precision_at_1
            value: 30.997000000000003
          - type: precision_at_10
            value: 8.885
          - type: precision_at_100
            value: 1.1360000000000001
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 19.457
          - type: precision_at_5
            value: 14.554
          - type: recall_at_1
            value: 27.322000000000003
          - type: recall_at_10
            value: 74.59400000000001
          - type: recall_at_100
            value: 93.699
          - type: recall_at_1000
            value: 98.76599999999999
          - type: recall_at_3
            value: 50.43
          - type: recall_at_5
            value: 62.073
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 71.109
          - type: map_at_10
            value: 85.137
          - type: map_at_100
            value: 85.759
          - type: map_at_1000
            value: 85.774
          - type: map_at_3
            value: 82.25200000000001
          - type: map_at_5
            value: 84.031
          - type: mrr_at_1
            value: 82.01
          - type: mrr_at_10
            value: 87.97
          - type: mrr_at_100
            value: 88.076
          - type: mrr_at_1000
            value: 88.076
          - type: mrr_at_3
            value: 87.06
          - type: mrr_at_5
            value: 87.694
          - type: ndcg_at_1
            value: 81.99
          - type: ndcg_at_10
            value: 88.738
          - type: ndcg_at_100
            value: 89.928
          - type: ndcg_at_1000
            value: 90.01400000000001
          - type: ndcg_at_3
            value: 86.042
          - type: ndcg_at_5
            value: 87.505
          - type: precision_at_1
            value: 81.99
          - type: precision_at_10
            value: 13.468
          - type: precision_at_100
            value: 1.534
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.702999999999996
          - type: precision_at_5
            value: 24.706
          - type: recall_at_1
            value: 71.109
          - type: recall_at_10
            value: 95.58
          - type: recall_at_100
            value: 99.62299999999999
          - type: recall_at_1000
            value: 99.98899999999999
          - type: recall_at_3
            value: 87.69
          - type: recall_at_5
            value: 91.982
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 59.43361510023748
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 64.53582642500159
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.2299999999999995
          - type: map_at_10
            value: 11.802
          - type: map_at_100
            value: 14.454
          - type: map_at_1000
            value: 14.865
          - type: map_at_3
            value: 7.911
          - type: map_at_5
            value: 9.912
          - type: mrr_at_1
            value: 21
          - type: mrr_at_10
            value: 32.722
          - type: mrr_at_100
            value: 33.989000000000004
          - type: mrr_at_1000
            value: 34.026
          - type: mrr_at_3
            value: 28.65
          - type: mrr_at_5
            value: 31.075000000000003
          - type: ndcg_at_1
            value: 21
          - type: ndcg_at_10
            value: 20.161
          - type: ndcg_at_100
            value: 30.122
          - type: ndcg_at_1000
            value: 36.399
          - type: ndcg_at_3
            value: 17.881
          - type: ndcg_at_5
            value: 16.439999999999998
          - type: precision_at_1
            value: 21
          - type: precision_at_10
            value: 10.94
          - type: precision_at_100
            value: 2.5340000000000003
          - type: precision_at_1000
            value: 0.402
          - type: precision_at_3
            value: 17.067
          - type: precision_at_5
            value: 15.120000000000001
          - type: recall_at_1
            value: 4.2299999999999995
          - type: recall_at_10
            value: 22.163
          - type: recall_at_100
            value: 51.42
          - type: recall_at_1000
            value: 81.652
          - type: recall_at_3
            value: 10.353
          - type: recall_at_5
            value: 15.323
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 86.44056731476951
          - type: cos_sim_spearman
            value: 82.32974396072802
          - type: euclidean_pearson
            value: 83.63616080755894
          - type: euclidean_spearman
            value: 82.32974071069209
          - type: manhattan_pearson
            value: 83.64149958303744
          - type: manhattan_spearman
            value: 82.32161014878858
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 85.65083720426293
          - type: cos_sim_spearman
            value: 77.60786500521749
          - type: euclidean_pearson
            value: 81.8149634918642
          - type: euclidean_spearman
            value: 77.60637450428892
          - type: manhattan_pearson
            value: 81.83507575657566
          - type: manhattan_spearman
            value: 77.613220311151
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 87.35683624595698
          - type: cos_sim_spearman
            value: 87.94550696434106
          - type: euclidean_pearson
            value: 87.50272679030367
          - type: euclidean_spearman
            value: 87.94550696434106
          - type: manhattan_pearson
            value: 87.4759786099497
          - type: manhattan_spearman
            value: 87.90226811166427
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 86.27438743391316
          - type: cos_sim_spearman
            value: 83.85378984594779
          - type: euclidean_pearson
            value: 85.25840635223642
          - type: euclidean_spearman
            value: 83.85378983163673
          - type: manhattan_pearson
            value: 85.24936075631025
          - type: manhattan_spearman
            value: 83.85052479958138
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 87.4783814521557
          - type: cos_sim_spearman
            value: 88.473284566453
          - type: euclidean_pearson
            value: 87.94757741870404
          - type: euclidean_spearman
            value: 88.47327698999878
          - type: manhattan_pearson
            value: 87.93617414057984
          - type: manhattan_spearman
            value: 88.45889274229359
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 84.68359147631057
          - type: cos_sim_spearman
            value: 86.46426572535646
          - type: euclidean_pearson
            value: 85.98303971468599
          - type: euclidean_spearman
            value: 86.46426572535646
          - type: manhattan_pearson
            value: 85.95109710640726
          - type: manhattan_spearman
            value: 86.43282632541583
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.88758959688604
          - type: cos_sim_spearman
            value: 88.70384784133324
          - type: euclidean_pearson
            value: 89.27293800474978
          - type: euclidean_spearman
            value: 88.70384784133324
          - type: manhattan_pearson
            value: 89.41494348093664
          - type: manhattan_spearman
            value: 88.8330050824941
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 67.66759812551814
          - type: cos_sim_spearman
            value: 68.02368115471576
          - type: euclidean_pearson
            value: 69.52859542757353
          - type: euclidean_spearman
            value: 68.02368115471576
          - type: manhattan_pearson
            value: 69.50332399468952
          - type: manhattan_spearman
            value: 67.91228681203849
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 87.75891320010409
          - type: cos_sim_spearman
            value: 88.33063922402347
          - type: euclidean_pearson
            value: 88.02964654543274
          - type: euclidean_spearman
            value: 88.33063922402347
          - type: manhattan_pearson
            value: 88.03029440701458
          - type: manhattan_spearman
            value: 88.3158691488696
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 87.46897310470844
          - type: mrr
            value: 96.29042072669523
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 62.261
          - type: map_at_10
            value: 71.023
          - type: map_at_100
            value: 71.5
          - type: map_at_1000
            value: 71.518
          - type: map_at_3
            value: 67.857
          - type: map_at_5
            value: 69.44500000000001
          - type: mrr_at_1
            value: 65
          - type: mrr_at_10
            value: 72.11
          - type: mrr_at_100
            value: 72.479
          - type: mrr_at_1000
            value: 72.49600000000001
          - type: mrr_at_3
            value: 69.722
          - type: mrr_at_5
            value: 71.02199999999999
          - type: ndcg_at_1
            value: 65
          - type: ndcg_at_10
            value: 75.40599999999999
          - type: ndcg_at_100
            value: 77.41
          - type: ndcg_at_1000
            value: 77.83200000000001
          - type: ndcg_at_3
            value: 69.95599999999999
          - type: ndcg_at_5
            value: 72.296
          - type: precision_at_1
            value: 65
          - type: precision_at_10
            value: 9.966999999999999
          - type: precision_at_100
            value: 1.097
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 26.667
          - type: precision_at_5
            value: 17.666999999999998
          - type: recall_at_1
            value: 62.261
          - type: recall_at_10
            value: 87.822
          - type: recall_at_100
            value: 96.833
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 73.06099999999999
          - type: recall_at_5
            value: 78.88300000000001
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.86138613861387
          - type: cos_sim_ap
            value: 96.7851799601876
          - type: cos_sim_f1
            value: 92.94354838709677
          - type: cos_sim_precision
            value: 93.69918699186992
          - type: cos_sim_recall
            value: 92.2
          - type: dot_accuracy
            value: 99.86138613861387
          - type: dot_ap
            value: 96.78517996018759
          - type: dot_f1
            value: 92.94354838709677
          - type: dot_precision
            value: 93.69918699186992
          - type: dot_recall
            value: 92.2
          - type: euclidean_accuracy
            value: 99.86138613861387
          - type: euclidean_ap
            value: 96.78517996018759
          - type: euclidean_f1
            value: 92.94354838709677
          - type: euclidean_precision
            value: 93.69918699186992
          - type: euclidean_recall
            value: 92.2
          - type: manhattan_accuracy
            value: 99.86336633663366
          - type: manhattan_ap
            value: 96.79790073128503
          - type: manhattan_f1
            value: 93.0930930930931
          - type: manhattan_precision
            value: 93.18637274549098
          - type: manhattan_recall
            value: 93
          - type: max_accuracy
            value: 99.86336633663366
          - type: max_ap
            value: 96.79790073128503
          - type: max_f1
            value: 93.0930930930931
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 65.07696952556874
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 35.51701116515262
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.40099299306496
          - type: mrr
            value: 56.411316420507596
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.940008734510055
          - type: cos_sim_spearman
            value: 31.606997026865212
          - type: dot_pearson
            value: 30.940010256206353
          - type: dot_spearman
            value: 31.62194110302714
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.197
          - type: map_at_10
            value: 1.6549999999999998
          - type: map_at_100
            value: 8.939
          - type: map_at_1000
            value: 22.402
          - type: map_at_3
            value: 0.587
          - type: map_at_5
            value: 0.931
          - type: mrr_at_1
            value: 74
          - type: mrr_at_10
            value: 84.667
          - type: mrr_at_100
            value: 84.667
          - type: mrr_at_1000
            value: 84.667
          - type: mrr_at_3
            value: 83.667
          - type: mrr_at_5
            value: 84.667
          - type: ndcg_at_1
            value: 69
          - type: ndcg_at_10
            value: 66.574
          - type: ndcg_at_100
            value: 51.074
          - type: ndcg_at_1000
            value: 47.263
          - type: ndcg_at_3
            value: 71.95
          - type: ndcg_at_5
            value: 70.52000000000001
          - type: precision_at_1
            value: 74
          - type: precision_at_10
            value: 70.39999999999999
          - type: precision_at_100
            value: 52.580000000000005
          - type: precision_at_1000
            value: 20.93
          - type: precision_at_3
            value: 76.667
          - type: precision_at_5
            value: 75.6
          - type: recall_at_1
            value: 0.197
          - type: recall_at_10
            value: 1.92
          - type: recall_at_100
            value: 12.655
          - type: recall_at_1000
            value: 44.522
          - type: recall_at_3
            value: 0.639
          - type: recall_at_5
            value: 1.03
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.735
          - type: map_at_10
            value: 9.064
          - type: map_at_100
            value: 15.021999999999998
          - type: map_at_1000
            value: 16.596
          - type: map_at_3
            value: 4.188
          - type: map_at_5
            value: 6.194999999999999
          - type: mrr_at_1
            value: 26.531
          - type: mrr_at_10
            value: 44.413000000000004
          - type: mrr_at_100
            value: 45.433
          - type: mrr_at_1000
            value: 45.452999999999996
          - type: mrr_at_3
            value: 41.497
          - type: mrr_at_5
            value: 42.925000000000004
          - type: ndcg_at_1
            value: 22.448999999999998
          - type: ndcg_at_10
            value: 22.597
          - type: ndcg_at_100
            value: 34.893
          - type: ndcg_at_1000
            value: 46.763
          - type: ndcg_at_3
            value: 24.366
          - type: ndcg_at_5
            value: 23.959
          - type: precision_at_1
            value: 26.531
          - type: precision_at_10
            value: 21.02
          - type: precision_at_100
            value: 7.51
          - type: precision_at_1000
            value: 1.541
          - type: precision_at_3
            value: 27.211000000000002
          - type: precision_at_5
            value: 25.306
          - type: recall_at_1
            value: 1.735
          - type: recall_at_10
            value: 15.870999999999999
          - type: recall_at_100
            value: 47.385
          - type: recall_at_1000
            value: 83.55
          - type: recall_at_3
            value: 5.813
          - type: recall_at_5
            value: 9.707
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 71.19
          - type: ap
            value: 15.106812062408629
          - type: f1
            value: 55.254852511954255
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 61.553480475382
          - type: f1
            value: 61.697424438626435
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 53.12092298453447
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.35173153722357
          - type: cos_sim_ap
            value: 78.22985044080261
          - type: cos_sim_f1
            value: 71.23356926188069
          - type: cos_sim_precision
            value: 68.36487142163999
          - type: cos_sim_recall
            value: 74.35356200527704
          - type: dot_accuracy
            value: 87.35173153722357
          - type: dot_ap
            value: 78.22985958574529
          - type: dot_f1
            value: 71.23356926188069
          - type: dot_precision
            value: 68.36487142163999
          - type: dot_recall
            value: 74.35356200527704
          - type: euclidean_accuracy
            value: 87.35173153722357
          - type: euclidean_ap
            value: 78.22985909816191
          - type: euclidean_f1
            value: 71.23356926188069
          - type: euclidean_precision
            value: 68.36487142163999
          - type: euclidean_recall
            value: 74.35356200527704
          - type: manhattan_accuracy
            value: 87.36365261965786
          - type: manhattan_ap
            value: 78.18108280854142
          - type: manhattan_f1
            value: 71.19958634953466
          - type: manhattan_precision
            value: 69.79219462747086
          - type: manhattan_recall
            value: 72.66490765171504
          - type: max_accuracy
            value: 87.36365261965786
          - type: max_ap
            value: 78.22985958574529
          - type: max_f1
            value: 71.23356926188069
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.71424690495596
          - type: cos_sim_ap
            value: 85.53000600450122
          - type: cos_sim_f1
            value: 77.95508274231679
          - type: cos_sim_precision
            value: 74.92189718829879
          - type: cos_sim_recall
            value: 81.24422543886665
          - type: dot_accuracy
            value: 88.71424690495596
          - type: dot_ap
            value: 85.53000387261983
          - type: dot_f1
            value: 77.95508274231679
          - type: dot_precision
            value: 74.92189718829879
          - type: dot_recall
            value: 81.24422543886665
          - type: euclidean_accuracy
            value: 88.71424690495596
          - type: euclidean_ap
            value: 85.53000527321076
          - type: euclidean_f1
            value: 77.95508274231679
          - type: euclidean_precision
            value: 74.92189718829879
          - type: euclidean_recall
            value: 81.24422543886665
          - type: manhattan_accuracy
            value: 88.7297706368611
          - type: manhattan_ap
            value: 85.49670114967172
          - type: manhattan_f1
            value: 77.91265729089562
          - type: manhattan_precision
            value: 75.01425313568986
          - type: manhattan_recall
            value: 81.04404065291038
          - type: max_accuracy
            value: 88.7297706368611
          - type: max_ap
            value: 85.53000600450122
          - type: max_f1
            value: 77.95508274231679

{MODEL_NAME}

This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 1196 with parameters:

{'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 5,
    "evaluation_steps": 50,
    "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 598,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)

Citing & Authors