salbatarni's picture
End of training
fc8156a verified
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_vocabulary_task5_fold5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_cross_vocabulary_task5_fold5
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co./aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3339
- Qwk: 0.8270
- Mse: 0.3339
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| No log | 0.0351 | 2 | 3.7424 | 0.0021 | 3.7424 |
| No log | 0.0702 | 4 | 1.7368 | 0.2488 | 1.7368 |
| No log | 0.1053 | 6 | 0.8992 | 0.2497 | 0.8992 |
| No log | 0.1404 | 8 | 0.7327 | 0.6064 | 0.7327 |
| No log | 0.1754 | 10 | 0.8042 | 0.5559 | 0.8042 |
| No log | 0.2105 | 12 | 0.9939 | 0.6771 | 0.9939 |
| No log | 0.2456 | 14 | 0.9616 | 0.6986 | 0.9616 |
| No log | 0.2807 | 16 | 0.8004 | 0.6308 | 0.8004 |
| No log | 0.3158 | 18 | 0.6373 | 0.6016 | 0.6373 |
| No log | 0.3509 | 20 | 0.6361 | 0.6470 | 0.6361 |
| No log | 0.3860 | 22 | 0.5967 | 0.7168 | 0.5967 |
| No log | 0.4211 | 24 | 0.4872 | 0.7622 | 0.4872 |
| No log | 0.4561 | 26 | 0.4462 | 0.7864 | 0.4462 |
| No log | 0.4912 | 28 | 0.4171 | 0.8029 | 0.4171 |
| No log | 0.5263 | 30 | 0.3844 | 0.8207 | 0.3844 |
| No log | 0.5614 | 32 | 0.4099 | 0.8533 | 0.4099 |
| No log | 0.5965 | 34 | 0.4527 | 0.8592 | 0.4527 |
| No log | 0.6316 | 36 | 0.4782 | 0.8573 | 0.4782 |
| No log | 0.6667 | 38 | 0.4629 | 0.8620 | 0.4629 |
| No log | 0.7018 | 40 | 0.3818 | 0.8464 | 0.3818 |
| No log | 0.7368 | 42 | 0.3245 | 0.8055 | 0.3245 |
| No log | 0.7719 | 44 | 0.3187 | 0.7617 | 0.3187 |
| No log | 0.8070 | 46 | 0.3176 | 0.7494 | 0.3176 |
| No log | 0.8421 | 48 | 0.3184 | 0.7414 | 0.3184 |
| No log | 0.8772 | 50 | 0.3131 | 0.7715 | 0.3131 |
| No log | 0.9123 | 52 | 0.3167 | 0.8053 | 0.3167 |
| No log | 0.9474 | 54 | 0.3273 | 0.8208 | 0.3273 |
| No log | 0.9825 | 56 | 0.3339 | 0.8270 | 0.3339 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1