salbatarni's picture
End of training
fc8156a verified
|
raw
history blame
3.31 kB
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_vocabulary_task5_fold5
    results: []

arabert_cross_vocabulary_task5_fold5

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3339
  • Qwk: 0.8270
  • Mse: 0.3339

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0351 2 3.7424 0.0021 3.7424
No log 0.0702 4 1.7368 0.2488 1.7368
No log 0.1053 6 0.8992 0.2497 0.8992
No log 0.1404 8 0.7327 0.6064 0.7327
No log 0.1754 10 0.8042 0.5559 0.8042
No log 0.2105 12 0.9939 0.6771 0.9939
No log 0.2456 14 0.9616 0.6986 0.9616
No log 0.2807 16 0.8004 0.6308 0.8004
No log 0.3158 18 0.6373 0.6016 0.6373
No log 0.3509 20 0.6361 0.6470 0.6361
No log 0.3860 22 0.5967 0.7168 0.5967
No log 0.4211 24 0.4872 0.7622 0.4872
No log 0.4561 26 0.4462 0.7864 0.4462
No log 0.4912 28 0.4171 0.8029 0.4171
No log 0.5263 30 0.3844 0.8207 0.3844
No log 0.5614 32 0.4099 0.8533 0.4099
No log 0.5965 34 0.4527 0.8592 0.4527
No log 0.6316 36 0.4782 0.8573 0.4782
No log 0.6667 38 0.4629 0.8620 0.4629
No log 0.7018 40 0.3818 0.8464 0.3818
No log 0.7368 42 0.3245 0.8055 0.3245
No log 0.7719 44 0.3187 0.7617 0.3187
No log 0.8070 46 0.3176 0.7494 0.3176
No log 0.8421 48 0.3184 0.7414 0.3184
No log 0.8772 50 0.3131 0.7715 0.3131
No log 0.9123 52 0.3167 0.8053 0.3167
No log 0.9474 54 0.3273 0.8208 0.3273
No log 0.9825 56 0.3339 0.8270 0.3339

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1