arabert_cross_vocabulary_task1_fold5

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2973
  • Qwk: 0.8562
  • Mse: 0.2979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1333 2 1.8520 0.1480 1.8511
No log 0.2667 4 1.0651 0.3341 1.0655
No log 0.4 6 1.1438 0.4927 1.1443
No log 0.5333 8 0.9722 0.6250 0.9725
No log 0.6667 10 0.6730 0.6107 0.6733
No log 0.8 12 0.5341 0.7630 0.5344
No log 0.9333 14 0.4706 0.8016 0.4708
No log 1.0667 16 0.4255 0.8194 0.4256
No log 1.2 18 0.4901 0.8387 0.4901
No log 1.3333 20 0.4642 0.8545 0.4642
No log 1.4667 22 0.3781 0.8345 0.3782
No log 1.6 24 0.3229 0.8175 0.3231
No log 1.7333 26 0.3530 0.8366 0.3532
No log 1.8667 28 0.4548 0.8719 0.4547
No log 2.0 30 0.6182 0.8633 0.6181
No log 2.1333 32 0.5731 0.8699 0.5733
No log 2.2667 34 0.3622 0.8422 0.3626
No log 2.4 36 0.2913 0.8430 0.2916
No log 2.5333 38 0.2887 0.8426 0.2890
No log 2.6667 40 0.2802 0.8370 0.2805
No log 2.8 42 0.3048 0.8363 0.3050
No log 2.9333 44 0.3487 0.8575 0.3490
No log 3.0667 46 0.3168 0.8493 0.3171
No log 3.2 48 0.2820 0.8372 0.2823
No log 3.3333 50 0.3036 0.8603 0.3040
No log 3.4667 52 0.3945 0.8659 0.3949
No log 3.6 54 0.3717 0.8677 0.3721
No log 3.7333 56 0.2969 0.8614 0.2973
No log 3.8667 58 0.2569 0.8385 0.2572
No log 4.0 60 0.2971 0.7270 0.2975
No log 4.1333 62 0.3312 0.6927 0.3316
No log 4.2667 64 0.2800 0.7702 0.2804
No log 4.4 66 0.2896 0.8502 0.2900
No log 4.5333 68 0.4169 0.8694 0.4173
No log 4.6667 70 0.4616 0.8813 0.4620
No log 4.8 72 0.3663 0.8659 0.3668
No log 4.9333 74 0.2765 0.8520 0.2769
No log 5.0667 76 0.3059 0.7201 0.3063
No log 5.2 78 0.3256 0.6901 0.3260
No log 5.3333 80 0.2884 0.7612 0.2888
No log 5.4667 82 0.2705 0.8362 0.2710
No log 5.6 84 0.3435 0.8601 0.3440
No log 5.7333 86 0.4426 0.8795 0.4430
No log 5.8667 88 0.4328 0.8789 0.4333
No log 6.0 90 0.3734 0.8717 0.3738
No log 6.1333 92 0.3017 0.8603 0.3022
No log 6.2667 94 0.2650 0.8366 0.2655
No log 6.4 96 0.2634 0.8175 0.2639
No log 6.5333 98 0.2676 0.8404 0.2681
No log 6.6667 100 0.2966 0.8607 0.2972
No log 6.8 102 0.3292 0.8611 0.3297
No log 6.9333 104 0.3536 0.8685 0.3541
No log 7.0667 106 0.3466 0.8685 0.3470
No log 7.2 108 0.3070 0.8599 0.3075
No log 7.3333 110 0.2886 0.8636 0.2891
No log 7.4667 112 0.2905 0.8636 0.2910
No log 7.6 114 0.2879 0.8636 0.2884
No log 7.7333 116 0.2898 0.8633 0.2904
No log 7.8667 118 0.2981 0.8587 0.2987
No log 8.0 120 0.2958 0.8593 0.2963
No log 8.1333 122 0.3001 0.8607 0.3006
No log 8.2667 124 0.2931 0.8606 0.2936
No log 8.4 126 0.2793 0.8630 0.2798
No log 8.5333 128 0.2685 0.8532 0.2690
No log 8.6667 130 0.2691 0.8518 0.2696
No log 8.8 132 0.2769 0.8571 0.2775
No log 8.9333 134 0.2923 0.8575 0.2929
No log 9.0667 136 0.3156 0.8576 0.3161
No log 9.2 138 0.3326 0.8643 0.3332
No log 9.3333 140 0.3349 0.8643 0.3355
No log 9.4667 142 0.3280 0.8657 0.3286
No log 9.6 144 0.3162 0.8599 0.3168
No log 9.7333 146 0.3062 0.8582 0.3068
No log 9.8667 148 0.2995 0.8549 0.3001
No log 10.0 150 0.2973 0.8562 0.2979

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_vocabulary_task1_fold5

Finetuned
(2755)
this model