arabert_cross_relevance_task7_fold4

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3071
  • Qwk: 0.5503
  • Mse: 0.3071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1333 2 0.5503 0.1601 0.5503
No log 0.2667 4 0.4709 0.1756 0.4709
No log 0.4 6 0.5461 0.3162 0.5461
No log 0.5333 8 0.4597 0.2317 0.4597
No log 0.6667 10 0.3774 0.2343 0.3774
No log 0.8 12 0.3353 0.2749 0.3353
No log 0.9333 14 0.3174 0.2948 0.3174
No log 1.0667 16 0.2902 0.3035 0.2902
No log 1.2 18 0.2766 0.3168 0.2766
No log 1.3333 20 0.2981 0.3060 0.2981
No log 1.4667 22 0.2863 0.3304 0.2863
No log 1.6 24 0.2902 0.3012 0.2902
No log 1.7333 26 0.2762 0.3012 0.2762
No log 1.8667 28 0.2673 0.3216 0.2673
No log 2.0 30 0.2662 0.3673 0.2662
No log 2.1333 32 0.2927 0.4416 0.2927
No log 2.2667 34 0.3407 0.4358 0.3407
No log 2.4 36 0.3384 0.4477 0.3384
No log 2.5333 38 0.3010 0.4244 0.3010
No log 2.6667 40 0.3009 0.3892 0.3009
No log 2.8 42 0.3374 0.4316 0.3374
No log 2.9333 44 0.3314 0.5561 0.3314
No log 3.0667 46 0.3496 0.6218 0.3496
No log 3.2 48 0.3271 0.5809 0.3271
No log 3.3333 50 0.2795 0.4989 0.2795
No log 3.4667 52 0.2819 0.4439 0.2819
No log 3.6 54 0.3087 0.3899 0.3087
No log 3.7333 56 0.3129 0.3657 0.3129
No log 3.8667 58 0.3247 0.4403 0.3247
No log 4.0 60 0.3497 0.5590 0.3497
No log 4.1333 62 0.3554 0.5878 0.3554
No log 4.2667 64 0.3325 0.5931 0.3325
No log 4.4 66 0.2900 0.5432 0.2900
No log 4.5333 68 0.2886 0.5107 0.2886
No log 4.6667 70 0.3060 0.4830 0.3060
No log 4.8 72 0.3388 0.4839 0.3388
No log 4.9333 74 0.3650 0.4978 0.3650
No log 5.0667 76 0.3668 0.5231 0.3668
No log 5.2 78 0.3779 0.5912 0.3779
No log 5.3333 80 0.3797 0.6118 0.3797
No log 5.4667 82 0.3500 0.5912 0.3500
No log 5.6 84 0.3089 0.5757 0.3089
No log 5.7333 86 0.2927 0.5560 0.2927
No log 5.8667 88 0.3153 0.5457 0.3153
No log 6.0 90 0.3342 0.5489 0.3342
No log 6.1333 92 0.3318 0.5833 0.3318
No log 6.2667 94 0.3329 0.5929 0.3329
No log 6.4 96 0.3261 0.5905 0.3261
No log 6.5333 98 0.3147 0.5945 0.3147
No log 6.6667 100 0.3034 0.5890 0.3034
No log 6.8 102 0.3084 0.5863 0.3084
No log 6.9333 104 0.3094 0.5743 0.3094
No log 7.0667 106 0.3099 0.5635 0.3099
No log 7.2 108 0.3101 0.5743 0.3101
No log 7.3333 110 0.3126 0.5689 0.3126
No log 7.4667 112 0.3295 0.5777 0.3295
No log 7.6 114 0.3516 0.5943 0.3516
No log 7.7333 116 0.3630 0.5902 0.3630
No log 7.8667 118 0.3567 0.5791 0.3567
No log 8.0 120 0.3425 0.5667 0.3425
No log 8.1333 122 0.3293 0.5424 0.3293
No log 8.2667 124 0.3261 0.5369 0.3261
No log 8.4 126 0.3225 0.5728 0.3225
No log 8.5333 128 0.3121 0.5644 0.3121
No log 8.6667 130 0.3072 0.5740 0.3072
No log 8.8 132 0.3079 0.5644 0.3079
No log 8.9333 134 0.3012 0.5687 0.3012
No log 9.0667 136 0.3021 0.5644 0.3021
No log 9.2 138 0.3058 0.5644 0.3058
No log 9.3333 140 0.3067 0.5557 0.3067
No log 9.4667 142 0.3080 0.5663 0.3080
No log 9.6 144 0.3079 0.5663 0.3079
No log 9.7333 146 0.3063 0.5493 0.3063
No log 9.8667 148 0.3065 0.5547 0.3065
No log 10.0 150 0.3071 0.5503 0.3071

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task7_fold4

Finetuned
(4204)
this model