arabert_cross_relevance_task7_fold4
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3071
- Qwk: 0.5503
- Mse: 0.3071
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1333 | 2 | 0.5503 | 0.1601 | 0.5503 |
No log | 0.2667 | 4 | 0.4709 | 0.1756 | 0.4709 |
No log | 0.4 | 6 | 0.5461 | 0.3162 | 0.5461 |
No log | 0.5333 | 8 | 0.4597 | 0.2317 | 0.4597 |
No log | 0.6667 | 10 | 0.3774 | 0.2343 | 0.3774 |
No log | 0.8 | 12 | 0.3353 | 0.2749 | 0.3353 |
No log | 0.9333 | 14 | 0.3174 | 0.2948 | 0.3174 |
No log | 1.0667 | 16 | 0.2902 | 0.3035 | 0.2902 |
No log | 1.2 | 18 | 0.2766 | 0.3168 | 0.2766 |
No log | 1.3333 | 20 | 0.2981 | 0.3060 | 0.2981 |
No log | 1.4667 | 22 | 0.2863 | 0.3304 | 0.2863 |
No log | 1.6 | 24 | 0.2902 | 0.3012 | 0.2902 |
No log | 1.7333 | 26 | 0.2762 | 0.3012 | 0.2762 |
No log | 1.8667 | 28 | 0.2673 | 0.3216 | 0.2673 |
No log | 2.0 | 30 | 0.2662 | 0.3673 | 0.2662 |
No log | 2.1333 | 32 | 0.2927 | 0.4416 | 0.2927 |
No log | 2.2667 | 34 | 0.3407 | 0.4358 | 0.3407 |
No log | 2.4 | 36 | 0.3384 | 0.4477 | 0.3384 |
No log | 2.5333 | 38 | 0.3010 | 0.4244 | 0.3010 |
No log | 2.6667 | 40 | 0.3009 | 0.3892 | 0.3009 |
No log | 2.8 | 42 | 0.3374 | 0.4316 | 0.3374 |
No log | 2.9333 | 44 | 0.3314 | 0.5561 | 0.3314 |
No log | 3.0667 | 46 | 0.3496 | 0.6218 | 0.3496 |
No log | 3.2 | 48 | 0.3271 | 0.5809 | 0.3271 |
No log | 3.3333 | 50 | 0.2795 | 0.4989 | 0.2795 |
No log | 3.4667 | 52 | 0.2819 | 0.4439 | 0.2819 |
No log | 3.6 | 54 | 0.3087 | 0.3899 | 0.3087 |
No log | 3.7333 | 56 | 0.3129 | 0.3657 | 0.3129 |
No log | 3.8667 | 58 | 0.3247 | 0.4403 | 0.3247 |
No log | 4.0 | 60 | 0.3497 | 0.5590 | 0.3497 |
No log | 4.1333 | 62 | 0.3554 | 0.5878 | 0.3554 |
No log | 4.2667 | 64 | 0.3325 | 0.5931 | 0.3325 |
No log | 4.4 | 66 | 0.2900 | 0.5432 | 0.2900 |
No log | 4.5333 | 68 | 0.2886 | 0.5107 | 0.2886 |
No log | 4.6667 | 70 | 0.3060 | 0.4830 | 0.3060 |
No log | 4.8 | 72 | 0.3388 | 0.4839 | 0.3388 |
No log | 4.9333 | 74 | 0.3650 | 0.4978 | 0.3650 |
No log | 5.0667 | 76 | 0.3668 | 0.5231 | 0.3668 |
No log | 5.2 | 78 | 0.3779 | 0.5912 | 0.3779 |
No log | 5.3333 | 80 | 0.3797 | 0.6118 | 0.3797 |
No log | 5.4667 | 82 | 0.3500 | 0.5912 | 0.3500 |
No log | 5.6 | 84 | 0.3089 | 0.5757 | 0.3089 |
No log | 5.7333 | 86 | 0.2927 | 0.5560 | 0.2927 |
No log | 5.8667 | 88 | 0.3153 | 0.5457 | 0.3153 |
No log | 6.0 | 90 | 0.3342 | 0.5489 | 0.3342 |
No log | 6.1333 | 92 | 0.3318 | 0.5833 | 0.3318 |
No log | 6.2667 | 94 | 0.3329 | 0.5929 | 0.3329 |
No log | 6.4 | 96 | 0.3261 | 0.5905 | 0.3261 |
No log | 6.5333 | 98 | 0.3147 | 0.5945 | 0.3147 |
No log | 6.6667 | 100 | 0.3034 | 0.5890 | 0.3034 |
No log | 6.8 | 102 | 0.3084 | 0.5863 | 0.3084 |
No log | 6.9333 | 104 | 0.3094 | 0.5743 | 0.3094 |
No log | 7.0667 | 106 | 0.3099 | 0.5635 | 0.3099 |
No log | 7.2 | 108 | 0.3101 | 0.5743 | 0.3101 |
No log | 7.3333 | 110 | 0.3126 | 0.5689 | 0.3126 |
No log | 7.4667 | 112 | 0.3295 | 0.5777 | 0.3295 |
No log | 7.6 | 114 | 0.3516 | 0.5943 | 0.3516 |
No log | 7.7333 | 116 | 0.3630 | 0.5902 | 0.3630 |
No log | 7.8667 | 118 | 0.3567 | 0.5791 | 0.3567 |
No log | 8.0 | 120 | 0.3425 | 0.5667 | 0.3425 |
No log | 8.1333 | 122 | 0.3293 | 0.5424 | 0.3293 |
No log | 8.2667 | 124 | 0.3261 | 0.5369 | 0.3261 |
No log | 8.4 | 126 | 0.3225 | 0.5728 | 0.3225 |
No log | 8.5333 | 128 | 0.3121 | 0.5644 | 0.3121 |
No log | 8.6667 | 130 | 0.3072 | 0.5740 | 0.3072 |
No log | 8.8 | 132 | 0.3079 | 0.5644 | 0.3079 |
No log | 8.9333 | 134 | 0.3012 | 0.5687 | 0.3012 |
No log | 9.0667 | 136 | 0.3021 | 0.5644 | 0.3021 |
No log | 9.2 | 138 | 0.3058 | 0.5644 | 0.3058 |
No log | 9.3333 | 140 | 0.3067 | 0.5557 | 0.3067 |
No log | 9.4667 | 142 | 0.3080 | 0.5663 | 0.3080 |
No log | 9.6 | 144 | 0.3079 | 0.5663 | 0.3079 |
No log | 9.7333 | 146 | 0.3063 | 0.5493 | 0.3063 |
No log | 9.8667 | 148 | 0.3065 | 0.5547 | 0.3065 |
No log | 10.0 | 150 | 0.3071 | 0.5503 | 0.3071 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for salbatarni/arabert_cross_relevance_task7_fold4
Base model
aubmindlab/bert-base-arabertv02