arabert_cross_relevance_task7_fold2

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3920
  • Qwk: 0.0
  • Mse: 0.3925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.125 2 1.1351 0.0055 1.1338
No log 0.25 4 0.3327 0.0239 0.3327
No log 0.375 6 0.4966 0.0325 0.4972
No log 0.5 8 0.4252 0.0068 0.4257
No log 0.625 10 0.3269 0.0 0.3271
No log 0.75 12 0.3043 0.0 0.3043
No log 0.875 14 0.3478 -0.0164 0.3479
No log 1.0 16 0.5150 -0.1231 0.5155
No log 1.125 18 0.6025 -0.0901 0.6032
No log 1.25 20 0.5883 -0.1348 0.5891
No log 1.375 22 0.4750 -0.0759 0.4757
No log 1.5 24 0.3601 -0.0164 0.3606
No log 1.625 26 0.3455 0.0 0.3460
No log 1.75 28 0.3605 0.0 0.3611
No log 1.875 30 0.4021 -0.0875 0.4027
No log 2.0 32 0.4215 -0.0723 0.4221
No log 2.125 34 0.4273 -0.1017 0.4280
No log 2.25 36 0.4182 -0.0723 0.4188
No log 2.375 38 0.3673 -0.0042 0.3677
No log 2.5 40 0.3484 0.0 0.3488
No log 2.625 42 0.3234 0.0 0.3237
No log 2.75 44 0.3167 0.0 0.3170
No log 2.875 46 0.3171 0.0 0.3173
No log 3.0 48 0.3402 0.0 0.3406
No log 3.125 50 0.3835 -0.0462 0.3840
No log 3.25 52 0.3969 -0.0631 0.3975
No log 3.375 54 0.3965 -0.0631 0.3971
No log 3.5 56 0.3727 -0.0085 0.3732
No log 3.625 58 0.3399 0.0122 0.3403
No log 3.75 60 0.3210 0.0122 0.3213
No log 3.875 62 0.3144 0.0122 0.3145
No log 4.0 64 0.3203 0.0122 0.3205
No log 4.125 66 0.3278 0.0 0.3281
No log 4.25 68 0.3425 0.0 0.3429
No log 4.375 70 0.3631 -0.0085 0.3636
No log 4.5 72 0.3878 -0.0631 0.3884
No log 4.625 74 0.3841 -0.0631 0.3847
No log 4.75 76 0.3554 -0.0164 0.3558
No log 4.875 78 0.3433 0.0 0.3437
No log 5.0 80 0.3407 0.0 0.3410
No log 5.125 82 0.3450 0.0 0.3453
No log 5.25 84 0.3491 0.0 0.3494
No log 5.375 86 0.3528 0.0 0.3532
No log 5.5 88 0.3559 0.0 0.3564
No log 5.625 90 0.3543 0.0 0.3547
No log 5.75 92 0.3489 0.0 0.3493
No log 5.875 94 0.3478 0.0 0.3480
No log 6.0 96 0.3484 0.0 0.3486
No log 6.125 98 0.3566 0.0 0.3568
No log 6.25 100 0.3544 0.0 0.3546
No log 6.375 102 0.3495 0.0 0.3499
No log 6.5 104 0.3529 0.0 0.3534
No log 6.625 106 0.3633 0.0122 0.3638
No log 6.75 108 0.3602 0.0122 0.3608
No log 6.875 110 0.3558 0.0 0.3563
No log 7.0 112 0.3542 0.0 0.3548
No log 7.125 114 0.3543 0.0122 0.3548
No log 7.25 116 0.3536 0.0122 0.3542
No log 7.375 118 0.3534 0.0122 0.3539
No log 7.5 120 0.3538 0.0 0.3543
No log 7.625 122 0.3553 0.0 0.3557
No log 7.75 124 0.3581 0.0 0.3585
No log 7.875 126 0.3601 0.0 0.3605
No log 8.0 128 0.3648 0.0 0.3652
No log 8.125 130 0.3658 0.0 0.3662
No log 8.25 132 0.3655 0.0 0.3659
No log 8.375 134 0.3666 0.0 0.3670
No log 8.5 136 0.3714 0.0 0.3718
No log 8.625 138 0.3763 0.0 0.3767
No log 8.75 140 0.3809 0.0 0.3813
No log 8.875 142 0.3871 0.0 0.3875
No log 9.0 144 0.3938 0.0 0.3941
No log 9.125 146 0.3971 0.0 0.3974
No log 9.25 148 0.3971 0.0 0.3975
No log 9.375 150 0.3950 0.0 0.3953
No log 9.5 152 0.3939 0.0 0.3943
No log 9.625 154 0.3921 0.0 0.3925
No log 9.75 156 0.3913 0.0 0.3918
No log 9.875 158 0.3917 0.0 0.3922
No log 10.0 160 0.3920 0.0 0.3925

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task7_fold2

Finetuned
(4204)
this model