arabert_cross_relevance_task6_fold5
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2242
- Qwk: 0.3701
- Mse: 0.2242
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 0.4047 | 0.2582 | 0.4045 |
No log | 0.25 | 4 | 0.2750 | 0.5141 | 0.2744 |
No log | 0.375 | 6 | 0.2556 | 0.3452 | 0.2551 |
No log | 0.5 | 8 | 0.2742 | 0.2629 | 0.2739 |
No log | 0.625 | 10 | 0.2556 | 0.2281 | 0.2553 |
No log | 0.75 | 12 | 0.2574 | 0.2267 | 0.2571 |
No log | 0.875 | 14 | 0.2555 | 0.3050 | 0.2552 |
No log | 1.0 | 16 | 0.2258 | 0.2618 | 0.2256 |
No log | 1.125 | 18 | 0.2150 | 0.3044 | 0.2148 |
No log | 1.25 | 20 | 0.2079 | 0.3044 | 0.2077 |
No log | 1.375 | 22 | 0.2022 | 0.3172 | 0.2020 |
No log | 1.5 | 24 | 0.2011 | 0.3247 | 0.2009 |
No log | 1.625 | 26 | 0.1872 | 0.3453 | 0.1871 |
No log | 1.75 | 28 | 0.1813 | 0.3543 | 0.1813 |
No log | 1.875 | 30 | 0.1764 | 0.3676 | 0.1764 |
No log | 2.0 | 32 | 0.1744 | 0.4205 | 0.1743 |
No log | 2.125 | 34 | 0.1788 | 0.4236 | 0.1788 |
No log | 2.25 | 36 | 0.1817 | 0.3746 | 0.1817 |
No log | 2.375 | 38 | 0.1911 | 0.4353 | 0.1911 |
No log | 2.5 | 40 | 0.2063 | 0.6065 | 0.2062 |
No log | 2.625 | 42 | 0.1851 | 0.4860 | 0.1851 |
No log | 2.75 | 44 | 0.1768 | 0.3810 | 0.1769 |
No log | 2.875 | 46 | 0.1839 | 0.3478 | 0.1840 |
No log | 3.0 | 48 | 0.1903 | 0.3489 | 0.1904 |
No log | 3.125 | 50 | 0.1887 | 0.3703 | 0.1888 |
No log | 3.25 | 52 | 0.1832 | 0.3724 | 0.1832 |
No log | 3.375 | 54 | 0.1852 | 0.3795 | 0.1852 |
No log | 3.5 | 56 | 0.1937 | 0.4146 | 0.1936 |
No log | 3.625 | 58 | 0.1934 | 0.3962 | 0.1934 |
No log | 3.75 | 60 | 0.1920 | 0.3669 | 0.1920 |
No log | 3.875 | 62 | 0.1930 | 0.4021 | 0.1930 |
No log | 4.0 | 64 | 0.1970 | 0.4137 | 0.1969 |
No log | 4.125 | 66 | 0.1944 | 0.4137 | 0.1943 |
No log | 4.25 | 68 | 0.1936 | 0.3890 | 0.1936 |
No log | 4.375 | 70 | 0.1981 | 0.3528 | 0.1981 |
No log | 4.5 | 72 | 0.1927 | 0.3528 | 0.1927 |
No log | 4.625 | 74 | 0.1928 | 0.3477 | 0.1928 |
No log | 4.75 | 76 | 0.1965 | 0.3546 | 0.1964 |
No log | 4.875 | 78 | 0.2095 | 0.3432 | 0.2094 |
No log | 5.0 | 80 | 0.2044 | 0.3443 | 0.2043 |
No log | 5.125 | 82 | 0.2006 | 0.3433 | 0.2006 |
No log | 5.25 | 84 | 0.2036 | 0.3465 | 0.2036 |
No log | 5.375 | 86 | 0.2052 | 0.3465 | 0.2053 |
No log | 5.5 | 88 | 0.2022 | 0.3465 | 0.2022 |
No log | 5.625 | 90 | 0.2017 | 0.3508 | 0.2017 |
No log | 5.75 | 92 | 0.2073 | 0.3508 | 0.2073 |
No log | 5.875 | 94 | 0.2122 | 0.3508 | 0.2123 |
No log | 6.0 | 96 | 0.1997 | 0.3561 | 0.1997 |
No log | 6.125 | 98 | 0.1967 | 0.3819 | 0.1966 |
No log | 6.25 | 100 | 0.1968 | 0.3925 | 0.1967 |
No log | 6.375 | 102 | 0.2088 | 0.3623 | 0.2088 |
No log | 6.5 | 104 | 0.2513 | 0.3650 | 0.2515 |
No log | 6.625 | 106 | 0.2811 | 0.3611 | 0.2813 |
No log | 6.75 | 108 | 0.2626 | 0.3689 | 0.2628 |
No log | 6.875 | 110 | 0.2260 | 0.3650 | 0.2261 |
No log | 7.0 | 112 | 0.2040 | 0.3607 | 0.2041 |
No log | 7.125 | 114 | 0.1937 | 0.3826 | 0.1937 |
No log | 7.25 | 116 | 0.1925 | 0.3865 | 0.1924 |
No log | 7.375 | 118 | 0.1942 | 0.3972 | 0.1941 |
No log | 7.5 | 120 | 0.1957 | 0.3658 | 0.1956 |
No log | 7.625 | 122 | 0.1993 | 0.3561 | 0.1993 |
No log | 7.75 | 124 | 0.2083 | 0.3547 | 0.2083 |
No log | 7.875 | 126 | 0.2197 | 0.3557 | 0.2198 |
No log | 8.0 | 128 | 0.2322 | 0.3566 | 0.2324 |
No log | 8.125 | 130 | 0.2346 | 0.3557 | 0.2348 |
No log | 8.25 | 132 | 0.2299 | 0.3538 | 0.2300 |
No log | 8.375 | 134 | 0.2254 | 0.3538 | 0.2255 |
No log | 8.5 | 136 | 0.2201 | 0.3538 | 0.2202 |
No log | 8.625 | 138 | 0.2148 | 0.3538 | 0.2148 |
No log | 8.75 | 140 | 0.2117 | 0.3538 | 0.2117 |
No log | 8.875 | 142 | 0.2123 | 0.3557 | 0.2124 |
No log | 9.0 | 144 | 0.2127 | 0.3557 | 0.2127 |
No log | 9.125 | 146 | 0.2153 | 0.3557 | 0.2154 |
No log | 9.25 | 148 | 0.2195 | 0.3557 | 0.2195 |
No log | 9.375 | 150 | 0.2224 | 0.3607 | 0.2225 |
No log | 9.5 | 152 | 0.2248 | 0.3717 | 0.2249 |
No log | 9.625 | 154 | 0.2259 | 0.3709 | 0.2260 |
No log | 9.75 | 156 | 0.2256 | 0.3701 | 0.2257 |
No log | 9.875 | 158 | 0.2249 | 0.3701 | 0.2249 |
No log | 10.0 | 160 | 0.2242 | 0.3701 | 0.2242 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for salbatarni/arabert_cross_relevance_task6_fold5
Base model
aubmindlab/bert-base-arabertv02