arabert_cross_organization_task5_fold3

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2242
  • Qwk: 0.1257
  • Mse: 1.2242

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 4.3828 -0.0124 4.3828
No log 0.2353 4 1.7251 0.0041 1.7251
No log 0.3529 6 1.2217 0.0734 1.2217
No log 0.4706 8 1.1541 -0.0141 1.1541
No log 0.5882 10 1.1775 -0.0461 1.1775
No log 0.7059 12 1.1336 0.0379 1.1336
No log 0.8235 14 1.1142 0.0423 1.1142
No log 0.9412 16 1.1059 0.0379 1.1059
No log 1.0588 18 1.1059 0.0924 1.1059
No log 1.1765 20 1.1052 0.0709 1.1052
No log 1.2941 22 1.1261 0.0646 1.1261
No log 1.4118 24 1.1338 0.0829 1.1338
No log 1.5294 26 1.1439 0.0944 1.1439
No log 1.6471 28 1.1713 0.0036 1.1713
No log 1.7647 30 1.3086 0.0105 1.3086
No log 1.8824 32 1.5561 -0.0786 1.5561
No log 2.0 34 1.4534 -0.0609 1.4534
No log 2.1176 36 1.2239 0.0407 1.2239
No log 2.2353 38 1.1711 0.0291 1.1711
No log 2.3529 40 1.1836 0.0190 1.1836
No log 2.4706 42 1.1290 0.0963 1.1290
No log 2.5882 44 1.1464 0.0201 1.1464
No log 2.7059 46 1.1366 0.0472 1.1366
No log 2.8235 48 1.1635 0.0397 1.1635
No log 2.9412 50 1.1571 0.0835 1.1571
No log 3.0588 52 1.1920 0.0170 1.1920
No log 3.1765 54 1.1867 0.0170 1.1867
No log 3.2941 56 1.1690 0.0502 1.1690
No log 3.4118 58 1.2051 -0.0577 1.2051
No log 3.5294 60 1.1905 0.0665 1.1905
No log 3.6471 62 1.2133 0.0774 1.2133
No log 3.7647 64 1.2200 0.0563 1.2200
No log 3.8824 66 1.3632 -0.0355 1.3632
No log 4.0 68 1.4047 -0.0128 1.4047
No log 4.1176 70 1.2417 -0.0439 1.2417
No log 4.2353 72 1.1986 0.0762 1.1986
No log 4.3529 74 1.2413 0.0193 1.2413
No log 4.4706 76 1.2285 0.0197 1.2285
No log 4.5882 78 1.1521 0.0963 1.1521
No log 4.7059 80 1.1339 0.1452 1.1339
No log 4.8235 82 1.1310 0.1751 1.1310
No log 4.9412 84 1.1433 0.1167 1.1433
No log 5.0588 86 1.1588 0.1167 1.1588
No log 5.1765 88 1.1625 0.0800 1.1625
No log 5.2941 90 1.1773 0.0762 1.1773
No log 5.4118 92 1.2029 0.0692 1.2029
No log 5.5294 94 1.2328 0.0544 1.2328
No log 5.6471 96 1.2678 0.0635 1.2678
No log 5.7647 98 1.2562 0.0948 1.2562
No log 5.8824 100 1.2431 -0.0243 1.2431
No log 6.0 102 1.2165 -0.0191 1.2165
No log 6.1176 104 1.1810 0.0583 1.1810
No log 6.2353 106 1.1655 0.1009 1.1655
No log 6.3529 108 1.1492 0.1282 1.1492
No log 6.4706 110 1.1516 0.1082 1.1516
No log 6.5882 112 1.1420 0.1282 1.1420
No log 6.7059 114 1.1429 0.0909 1.1429
No log 6.8235 116 1.1601 0.0759 1.1601
No log 6.9412 118 1.1970 0.0482 1.1970
No log 7.0588 120 1.2180 0.0284 1.2180
No log 7.1765 122 1.1913 0.1109 1.1913
No log 7.2941 124 1.2011 0.1239 1.2011
No log 7.4118 126 1.2142 0.1239 1.2142
No log 7.5294 128 1.2462 0.0357 1.2462
No log 7.6471 130 1.2906 0.0199 1.2906
No log 7.7647 132 1.2722 0.0275 1.2722
No log 7.8824 134 1.2418 0.1080 1.2418
No log 8.0 136 1.2319 0.1080 1.2319
No log 8.1176 138 1.2288 0.0696 1.2288
No log 8.2353 140 1.2238 0.0833 1.2238
No log 8.3529 142 1.2114 0.0882 1.2114
No log 8.4706 144 1.2083 0.0747 1.2083
No log 8.5882 146 1.2039 0.0815 1.2039
No log 8.7059 148 1.2096 0.0882 1.2096
No log 8.8235 150 1.2230 0.0814 1.2230
No log 8.9412 152 1.2411 0.0429 1.2411
No log 9.0588 154 1.2602 0.0549 1.2602
No log 9.1765 156 1.2709 0.0659 1.2709
No log 9.2941 158 1.2729 0.0141 1.2729
No log 9.4118 160 1.2582 0.0024 1.2582
No log 9.5294 162 1.2378 0.1169 1.2378
No log 9.6471 164 1.2260 0.1065 1.2260
No log 9.7647 166 1.2223 0.1257 1.2223
No log 9.8824 168 1.2232 0.1257 1.2232
No log 10.0 170 1.2242 0.1257 1.2242

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_organization_task5_fold3

Finetuned
(4204)
this model