arabert_cross_organization_task5_fold3
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2242
- Qwk: 0.1257
- Mse: 1.2242
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1176 | 2 | 4.3828 | -0.0124 | 4.3828 |
No log | 0.2353 | 4 | 1.7251 | 0.0041 | 1.7251 |
No log | 0.3529 | 6 | 1.2217 | 0.0734 | 1.2217 |
No log | 0.4706 | 8 | 1.1541 | -0.0141 | 1.1541 |
No log | 0.5882 | 10 | 1.1775 | -0.0461 | 1.1775 |
No log | 0.7059 | 12 | 1.1336 | 0.0379 | 1.1336 |
No log | 0.8235 | 14 | 1.1142 | 0.0423 | 1.1142 |
No log | 0.9412 | 16 | 1.1059 | 0.0379 | 1.1059 |
No log | 1.0588 | 18 | 1.1059 | 0.0924 | 1.1059 |
No log | 1.1765 | 20 | 1.1052 | 0.0709 | 1.1052 |
No log | 1.2941 | 22 | 1.1261 | 0.0646 | 1.1261 |
No log | 1.4118 | 24 | 1.1338 | 0.0829 | 1.1338 |
No log | 1.5294 | 26 | 1.1439 | 0.0944 | 1.1439 |
No log | 1.6471 | 28 | 1.1713 | 0.0036 | 1.1713 |
No log | 1.7647 | 30 | 1.3086 | 0.0105 | 1.3086 |
No log | 1.8824 | 32 | 1.5561 | -0.0786 | 1.5561 |
No log | 2.0 | 34 | 1.4534 | -0.0609 | 1.4534 |
No log | 2.1176 | 36 | 1.2239 | 0.0407 | 1.2239 |
No log | 2.2353 | 38 | 1.1711 | 0.0291 | 1.1711 |
No log | 2.3529 | 40 | 1.1836 | 0.0190 | 1.1836 |
No log | 2.4706 | 42 | 1.1290 | 0.0963 | 1.1290 |
No log | 2.5882 | 44 | 1.1464 | 0.0201 | 1.1464 |
No log | 2.7059 | 46 | 1.1366 | 0.0472 | 1.1366 |
No log | 2.8235 | 48 | 1.1635 | 0.0397 | 1.1635 |
No log | 2.9412 | 50 | 1.1571 | 0.0835 | 1.1571 |
No log | 3.0588 | 52 | 1.1920 | 0.0170 | 1.1920 |
No log | 3.1765 | 54 | 1.1867 | 0.0170 | 1.1867 |
No log | 3.2941 | 56 | 1.1690 | 0.0502 | 1.1690 |
No log | 3.4118 | 58 | 1.2051 | -0.0577 | 1.2051 |
No log | 3.5294 | 60 | 1.1905 | 0.0665 | 1.1905 |
No log | 3.6471 | 62 | 1.2133 | 0.0774 | 1.2133 |
No log | 3.7647 | 64 | 1.2200 | 0.0563 | 1.2200 |
No log | 3.8824 | 66 | 1.3632 | -0.0355 | 1.3632 |
No log | 4.0 | 68 | 1.4047 | -0.0128 | 1.4047 |
No log | 4.1176 | 70 | 1.2417 | -0.0439 | 1.2417 |
No log | 4.2353 | 72 | 1.1986 | 0.0762 | 1.1986 |
No log | 4.3529 | 74 | 1.2413 | 0.0193 | 1.2413 |
No log | 4.4706 | 76 | 1.2285 | 0.0197 | 1.2285 |
No log | 4.5882 | 78 | 1.1521 | 0.0963 | 1.1521 |
No log | 4.7059 | 80 | 1.1339 | 0.1452 | 1.1339 |
No log | 4.8235 | 82 | 1.1310 | 0.1751 | 1.1310 |
No log | 4.9412 | 84 | 1.1433 | 0.1167 | 1.1433 |
No log | 5.0588 | 86 | 1.1588 | 0.1167 | 1.1588 |
No log | 5.1765 | 88 | 1.1625 | 0.0800 | 1.1625 |
No log | 5.2941 | 90 | 1.1773 | 0.0762 | 1.1773 |
No log | 5.4118 | 92 | 1.2029 | 0.0692 | 1.2029 |
No log | 5.5294 | 94 | 1.2328 | 0.0544 | 1.2328 |
No log | 5.6471 | 96 | 1.2678 | 0.0635 | 1.2678 |
No log | 5.7647 | 98 | 1.2562 | 0.0948 | 1.2562 |
No log | 5.8824 | 100 | 1.2431 | -0.0243 | 1.2431 |
No log | 6.0 | 102 | 1.2165 | -0.0191 | 1.2165 |
No log | 6.1176 | 104 | 1.1810 | 0.0583 | 1.1810 |
No log | 6.2353 | 106 | 1.1655 | 0.1009 | 1.1655 |
No log | 6.3529 | 108 | 1.1492 | 0.1282 | 1.1492 |
No log | 6.4706 | 110 | 1.1516 | 0.1082 | 1.1516 |
No log | 6.5882 | 112 | 1.1420 | 0.1282 | 1.1420 |
No log | 6.7059 | 114 | 1.1429 | 0.0909 | 1.1429 |
No log | 6.8235 | 116 | 1.1601 | 0.0759 | 1.1601 |
No log | 6.9412 | 118 | 1.1970 | 0.0482 | 1.1970 |
No log | 7.0588 | 120 | 1.2180 | 0.0284 | 1.2180 |
No log | 7.1765 | 122 | 1.1913 | 0.1109 | 1.1913 |
No log | 7.2941 | 124 | 1.2011 | 0.1239 | 1.2011 |
No log | 7.4118 | 126 | 1.2142 | 0.1239 | 1.2142 |
No log | 7.5294 | 128 | 1.2462 | 0.0357 | 1.2462 |
No log | 7.6471 | 130 | 1.2906 | 0.0199 | 1.2906 |
No log | 7.7647 | 132 | 1.2722 | 0.0275 | 1.2722 |
No log | 7.8824 | 134 | 1.2418 | 0.1080 | 1.2418 |
No log | 8.0 | 136 | 1.2319 | 0.1080 | 1.2319 |
No log | 8.1176 | 138 | 1.2288 | 0.0696 | 1.2288 |
No log | 8.2353 | 140 | 1.2238 | 0.0833 | 1.2238 |
No log | 8.3529 | 142 | 1.2114 | 0.0882 | 1.2114 |
No log | 8.4706 | 144 | 1.2083 | 0.0747 | 1.2083 |
No log | 8.5882 | 146 | 1.2039 | 0.0815 | 1.2039 |
No log | 8.7059 | 148 | 1.2096 | 0.0882 | 1.2096 |
No log | 8.8235 | 150 | 1.2230 | 0.0814 | 1.2230 |
No log | 8.9412 | 152 | 1.2411 | 0.0429 | 1.2411 |
No log | 9.0588 | 154 | 1.2602 | 0.0549 | 1.2602 |
No log | 9.1765 | 156 | 1.2709 | 0.0659 | 1.2709 |
No log | 9.2941 | 158 | 1.2729 | 0.0141 | 1.2729 |
No log | 9.4118 | 160 | 1.2582 | 0.0024 | 1.2582 |
No log | 9.5294 | 162 | 1.2378 | 0.1169 | 1.2378 |
No log | 9.6471 | 164 | 1.2260 | 0.1065 | 1.2260 |
No log | 9.7647 | 166 | 1.2223 | 0.1257 | 1.2223 |
No log | 9.8824 | 168 | 1.2232 | 0.1257 | 1.2232 |
No log | 10.0 | 170 | 1.2242 | 0.1257 | 1.2242 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for salbatarni/arabert_cross_organization_task5_fold3
Base model
aubmindlab/bert-base-arabertv02