arabert_cross_organization_task4_fold6

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5671
  • Qwk: 0.6088
  • Mse: 0.5665

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1111 2 1.6087 0.0446 1.6095
No log 0.2222 4 1.0873 0.0325 1.0875
No log 0.3333 6 0.9052 0.3977 0.9045
No log 0.4444 8 0.7546 0.3836 0.7542
No log 0.5556 10 0.5626 0.4920 0.5622
No log 0.6667 12 0.5049 0.6220 0.5048
No log 0.7778 14 0.6046 0.5251 0.6033
No log 0.8889 16 0.4861 0.6302 0.4861
No log 1.0 18 0.6306 0.6759 0.6318
No log 1.1111 20 0.5794 0.7289 0.5803
No log 1.2222 22 0.4351 0.6154 0.4348
No log 1.3333 24 0.5139 0.5149 0.5133
No log 1.4444 26 0.4487 0.5967 0.4481
No log 1.5556 28 0.4505 0.7663 0.4507
No log 1.6667 30 0.4917 0.7702 0.4921
No log 1.7778 32 0.4432 0.6859 0.4426
No log 1.8889 34 0.5427 0.5673 0.5415
No log 2.0 36 0.5133 0.5536 0.5122
No log 2.1111 38 0.4171 0.6515 0.4166
No log 2.2222 40 0.4265 0.6951 0.4260
No log 2.3333 42 0.4487 0.6401 0.4480
No log 2.4444 44 0.5093 0.5826 0.5082
No log 2.5556 46 0.5193 0.5750 0.5182
No log 2.6667 48 0.4705 0.6472 0.4699
No log 2.7778 50 0.4668 0.7101 0.4666
No log 2.8889 52 0.4574 0.7064 0.4572
No log 3.0 54 0.4490 0.6031 0.4485
No log 3.1111 56 0.5005 0.5434 0.4998
No log 3.2222 58 0.4728 0.5714 0.4721
No log 3.3333 60 0.4444 0.6493 0.4440
No log 3.4444 62 0.4764 0.6914 0.4760
No log 3.5556 64 0.5124 0.6726 0.5118
No log 3.6667 66 0.5636 0.5952 0.5627
No log 3.7778 68 0.5479 0.5977 0.5469
No log 3.8889 70 0.5130 0.6191 0.5121
No log 4.0 72 0.4884 0.6461 0.4879
No log 4.1111 74 0.4839 0.5980 0.4832
No log 4.2222 76 0.5315 0.5457 0.5305
No log 4.3333 78 0.5336 0.5465 0.5326
No log 4.4444 80 0.4907 0.5701 0.4901
No log 4.5556 82 0.4836 0.6726 0.4834
No log 4.6667 84 0.5058 0.6880 0.5058
No log 4.7778 86 0.5131 0.6355 0.5127
No log 4.8889 88 0.6336 0.5424 0.6325
No log 5.0 90 0.7217 0.5167 0.7203
No log 5.1111 92 0.6484 0.5394 0.6473
No log 5.2222 94 0.5239 0.6047 0.5234
No log 5.3333 96 0.4960 0.6591 0.4957
No log 5.4444 98 0.4958 0.6725 0.4956
No log 5.5556 100 0.5131 0.6097 0.5126
No log 5.6667 102 0.5789 0.5640 0.5779
No log 5.7778 104 0.6393 0.5598 0.6380
No log 5.8889 106 0.6013 0.5640 0.6003
No log 6.0 108 0.5576 0.6085 0.5569
No log 6.1111 110 0.5394 0.6682 0.5389
No log 6.2222 112 0.5429 0.6569 0.5424
No log 6.3333 114 0.5841 0.5873 0.5832
No log 6.4444 116 0.6113 0.5642 0.6102
No log 6.5556 118 0.5828 0.5631 0.5818
No log 6.6667 120 0.5283 0.6190 0.5277
No log 6.7778 122 0.5137 0.6474 0.5132
No log 6.8889 124 0.5253 0.6135 0.5246
No log 7.0 126 0.5588 0.5693 0.5579
No log 7.1111 128 0.5741 0.5644 0.5732
No log 7.2222 130 0.5814 0.5627 0.5805
No log 7.3333 132 0.5510 0.5687 0.5502
No log 7.4444 134 0.5316 0.6227 0.5311
No log 7.5556 136 0.5345 0.6034 0.5339
No log 7.6667 138 0.5500 0.5709 0.5493
No log 7.7778 140 0.5557 0.5748 0.5551
No log 7.8889 142 0.5534 0.5855 0.5528
No log 8.0 144 0.5613 0.5748 0.5606
No log 8.1111 146 0.5663 0.5748 0.5657
No log 8.2222 148 0.5748 0.5709 0.5741
No log 8.3333 150 0.5887 0.5693 0.5880
No log 8.4444 152 0.5802 0.5858 0.5796
No log 8.5556 154 0.5690 0.6232 0.5685
No log 8.6667 156 0.5680 0.6356 0.5676
No log 8.7778 158 0.5770 0.6074 0.5764
No log 8.8889 160 0.5943 0.5640 0.5935
No log 9.0 162 0.6147 0.5503 0.6138
No log 9.1111 164 0.6207 0.5539 0.6198
No log 9.2222 166 0.6153 0.5503 0.6144
No log 9.3333 168 0.5994 0.5602 0.5986
No log 9.4444 170 0.5838 0.5640 0.5830
No log 9.5556 172 0.5750 0.5795 0.5744
No log 9.6667 174 0.5688 0.5982 0.5682
No log 9.7778 176 0.5665 0.6054 0.5659
No log 9.8889 178 0.5665 0.6054 0.5659
No log 10.0 180 0.5671 0.6088 0.5665

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for salbatarni/arabert_cross_organization_task4_fold6

Finetuned
(4222)
this model