arabert_cross_organization_task4_fold5

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4843
  • Qwk: 0.7666
  • Mse: 0.4857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 0.9490 0.2150 0.9491
No log 0.2353 4 0.8716 0.5434 0.8727
No log 0.3529 6 0.6659 0.6268 0.6673
No log 0.4706 8 0.5369 0.6777 0.5386
No log 0.5882 10 0.6440 0.7813 0.6460
No log 0.7059 12 0.5256 0.6777 0.5270
No log 0.8235 14 0.4966 0.7039 0.4980
No log 0.9412 16 0.7392 0.7069 0.7410
No log 1.0588 18 0.8304 0.7187 0.8325
No log 1.1765 20 0.6276 0.7906 0.6292
No log 1.2941 22 0.4520 0.7197 0.4531
No log 1.4118 24 0.4614 0.7447 0.4625
No log 1.5294 26 0.5417 0.7758 0.5430
No log 1.6471 28 0.4689 0.7534 0.4700
No log 1.7647 30 0.4572 0.7731 0.4583
No log 1.8824 32 0.6532 0.7981 0.6546
No log 2.0 34 0.7591 0.7855 0.7607
No log 2.1176 36 0.5854 0.7951 0.5867
No log 2.2353 38 0.4474 0.7384 0.4483
No log 2.3529 40 0.4483 0.7531 0.4492
No log 2.4706 42 0.5873 0.8112 0.5887
No log 2.5882 44 0.6933 0.8094 0.6948
No log 2.7059 46 0.5657 0.7996 0.5670
No log 2.8235 48 0.4349 0.7582 0.4358
No log 2.9412 50 0.4131 0.7274 0.4139
No log 3.0588 52 0.4231 0.7410 0.4241
No log 3.1765 54 0.4993 0.7809 0.5006
No log 3.2941 56 0.5623 0.8152 0.5637
No log 3.4118 58 0.4818 0.7688 0.4831
No log 3.5294 60 0.4394 0.7381 0.4405
No log 3.6471 62 0.4350 0.7249 0.4361
No log 3.7647 64 0.4743 0.7662 0.4756
No log 3.8824 66 0.5838 0.8110 0.5853
No log 4.0 68 0.6906 0.7966 0.6921
No log 4.1176 70 0.6463 0.7987 0.6478
No log 4.2353 72 0.4721 0.7595 0.4733
No log 4.3529 74 0.4408 0.7408 0.4419
No log 4.4706 76 0.4907 0.7768 0.4920
No log 4.5882 78 0.5961 0.7936 0.5977
No log 4.7059 80 0.5925 0.7830 0.5941
No log 4.8235 82 0.5242 0.7638 0.5257
No log 4.9412 84 0.4430 0.7330 0.4442
No log 5.0588 86 0.4332 0.7022 0.4342
No log 5.1765 88 0.4549 0.7664 0.4561
No log 5.2941 90 0.5563 0.7685 0.5577
No log 5.4118 92 0.6249 0.7924 0.6265
No log 5.5294 94 0.5569 0.7721 0.5585
No log 5.6471 96 0.4954 0.7701 0.4969
No log 5.7647 98 0.4434 0.7420 0.4446
No log 5.8824 100 0.4310 0.7481 0.4320
No log 6.0 102 0.4622 0.7629 0.4634
No log 6.1176 104 0.5374 0.7903 0.5387
No log 6.2353 106 0.5235 0.7829 0.5248
No log 6.3529 108 0.4601 0.7688 0.4612
No log 6.4706 110 0.4260 0.7327 0.4269
No log 6.5882 112 0.4318 0.7362 0.4327
No log 6.7059 114 0.4747 0.7719 0.4758
No log 6.8235 116 0.5753 0.7740 0.5767
No log 6.9412 118 0.5967 0.7736 0.5981
No log 7.0588 120 0.5343 0.7711 0.5356
No log 7.1765 122 0.4499 0.7556 0.4510
No log 7.2941 124 0.4329 0.7295 0.4337
No log 7.4118 126 0.4364 0.7376 0.4373
No log 7.5294 128 0.4672 0.7700 0.4683
No log 7.6471 130 0.5413 0.7754 0.5427
No log 7.7647 132 0.5644 0.7761 0.5659
No log 7.8824 134 0.5227 0.7749 0.5241
No log 8.0 136 0.4791 0.7688 0.4804
No log 8.1176 138 0.4693 0.7580 0.4705
No log 8.2353 140 0.4639 0.7580 0.4652
No log 8.3529 142 0.4809 0.7685 0.4822
No log 8.4706 144 0.4940 0.7700 0.4954
No log 8.5882 146 0.4956 0.7700 0.4970
No log 8.7059 148 0.4916 0.7753 0.4930
No log 8.8235 150 0.4799 0.7651 0.4812
No log 8.9412 152 0.4697 0.7580 0.4709
No log 9.0588 154 0.4612 0.7573 0.4624
No log 9.1765 156 0.4541 0.7549 0.4552
No log 9.2941 158 0.4549 0.7566 0.4561
No log 9.4118 160 0.4603 0.7527 0.4616
No log 9.5294 162 0.4654 0.7544 0.4667
No log 9.6471 164 0.4728 0.7597 0.4742
No log 9.7647 166 0.4786 0.7597 0.4800
No log 9.8824 168 0.4825 0.7685 0.4838
No log 10.0 170 0.4843 0.7666 0.4857

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for salbatarni/arabert_cross_organization_task4_fold5

Finetuned
(4222)
this model