arabert_cross_organization_task4_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7438
- Qwk: 0.4143
- Mse: 0.7438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1176 | 2 | 3.2005 | 0.0155 | 3.2005 |
No log | 0.2353 | 4 | 1.7053 | -0.0034 | 1.7053 |
No log | 0.3529 | 6 | 1.1027 | 0.1636 | 1.1027 |
No log | 0.4706 | 8 | 1.0959 | 0.1953 | 1.0959 |
No log | 0.5882 | 10 | 1.1008 | 0.2356 | 1.1008 |
No log | 0.7059 | 12 | 0.7123 | 0.3763 | 0.7123 |
No log | 0.8235 | 14 | 0.7466 | 0.4020 | 0.7466 |
No log | 0.9412 | 16 | 0.9174 | 0.3522 | 0.9174 |
No log | 1.0588 | 18 | 0.9416 | 0.3154 | 0.9416 |
No log | 1.1765 | 20 | 0.7002 | 0.3766 | 0.7002 |
No log | 1.2941 | 22 | 0.6826 | 0.3709 | 0.6826 |
No log | 1.4118 | 24 | 0.6996 | 0.3822 | 0.6996 |
No log | 1.5294 | 26 | 0.6165 | 0.4733 | 0.6165 |
No log | 1.6471 | 28 | 0.5696 | 0.5228 | 0.5696 |
No log | 1.7647 | 30 | 0.7076 | 0.4534 | 0.7076 |
No log | 1.8824 | 32 | 0.7251 | 0.4533 | 0.7251 |
No log | 2.0 | 34 | 0.5922 | 0.4921 | 0.5922 |
No log | 2.1176 | 36 | 0.5428 | 0.5484 | 0.5428 |
No log | 2.2353 | 38 | 0.5662 | 0.5159 | 0.5662 |
No log | 2.3529 | 40 | 0.6256 | 0.4714 | 0.6256 |
No log | 2.4706 | 42 | 0.6008 | 0.4805 | 0.6008 |
No log | 2.5882 | 44 | 0.5493 | 0.5367 | 0.5493 |
No log | 2.7059 | 46 | 0.5855 | 0.5042 | 0.5855 |
No log | 2.8235 | 48 | 0.6888 | 0.4526 | 0.6888 |
No log | 2.9412 | 50 | 0.6594 | 0.4838 | 0.6594 |
No log | 3.0588 | 52 | 0.5913 | 0.5174 | 0.5913 |
No log | 3.1765 | 54 | 0.5440 | 0.5485 | 0.5440 |
No log | 3.2941 | 56 | 0.5766 | 0.5008 | 0.5766 |
No log | 3.4118 | 58 | 0.7541 | 0.4405 | 0.7541 |
No log | 3.5294 | 60 | 0.6666 | 0.4686 | 0.6666 |
No log | 3.6471 | 62 | 0.5454 | 0.5289 | 0.5454 |
No log | 3.7647 | 64 | 0.5373 | 0.5502 | 0.5373 |
No log | 3.8824 | 66 | 0.5811 | 0.4814 | 0.5811 |
No log | 4.0 | 68 | 0.8522 | 0.3958 | 0.8522 |
No log | 4.1176 | 70 | 0.9611 | 0.3420 | 0.9611 |
No log | 4.2353 | 72 | 0.7150 | 0.4366 | 0.7150 |
No log | 4.3529 | 74 | 0.5129 | 0.5461 | 0.5129 |
No log | 4.4706 | 76 | 0.5130 | 0.5731 | 0.5130 |
No log | 4.5882 | 78 | 0.5549 | 0.5002 | 0.5549 |
No log | 4.7059 | 80 | 0.6423 | 0.4682 | 0.6423 |
No log | 4.8235 | 82 | 0.6433 | 0.4655 | 0.6433 |
No log | 4.9412 | 84 | 0.6814 | 0.4383 | 0.6814 |
No log | 5.0588 | 86 | 0.6506 | 0.4536 | 0.6506 |
No log | 5.1765 | 88 | 0.6845 | 0.4340 | 0.6845 |
No log | 5.2941 | 90 | 0.6105 | 0.4691 | 0.6105 |
No log | 5.4118 | 92 | 0.5818 | 0.5096 | 0.5818 |
No log | 5.5294 | 94 | 0.6505 | 0.4675 | 0.6505 |
No log | 5.6471 | 96 | 0.8762 | 0.4031 | 0.8762 |
No log | 5.7647 | 98 | 0.9354 | 0.3979 | 0.9354 |
No log | 5.8824 | 100 | 0.7273 | 0.4370 | 0.7273 |
No log | 6.0 | 102 | 0.5439 | 0.5370 | 0.5439 |
No log | 6.1176 | 104 | 0.5275 | 0.5934 | 0.5275 |
No log | 6.2353 | 106 | 0.5389 | 0.5407 | 0.5389 |
No log | 6.3529 | 108 | 0.6632 | 0.4439 | 0.6632 |
No log | 6.4706 | 110 | 0.7438 | 0.4262 | 0.7438 |
No log | 6.5882 | 112 | 0.7194 | 0.4386 | 0.7194 |
No log | 6.7059 | 114 | 0.6649 | 0.4611 | 0.6649 |
No log | 6.8235 | 116 | 0.6469 | 0.4620 | 0.6469 |
No log | 6.9412 | 118 | 0.6869 | 0.4426 | 0.6869 |
No log | 7.0588 | 120 | 0.6784 | 0.4431 | 0.6784 |
No log | 7.1765 | 122 | 0.6099 | 0.4604 | 0.6099 |
No log | 7.2941 | 124 | 0.6103 | 0.4469 | 0.6103 |
No log | 7.4118 | 126 | 0.6514 | 0.4384 | 0.6514 |
No log | 7.5294 | 128 | 0.7174 | 0.4218 | 0.7174 |
No log | 7.6471 | 130 | 0.7205 | 0.4218 | 0.7205 |
No log | 7.7647 | 132 | 0.6510 | 0.4378 | 0.6510 |
No log | 7.8824 | 134 | 0.5851 | 0.4688 | 0.5851 |
No log | 8.0 | 136 | 0.5810 | 0.4909 | 0.5810 |
No log | 8.1176 | 138 | 0.6226 | 0.4464 | 0.6226 |
No log | 8.2353 | 140 | 0.7068 | 0.4404 | 0.7068 |
No log | 8.3529 | 142 | 0.8169 | 0.4120 | 0.8169 |
No log | 8.4706 | 144 | 0.8268 | 0.4106 | 0.8268 |
No log | 8.5882 | 146 | 0.7821 | 0.4211 | 0.7821 |
No log | 8.7059 | 148 | 0.7186 | 0.4252 | 0.7186 |
No log | 8.8235 | 150 | 0.6896 | 0.4345 | 0.6896 |
No log | 8.9412 | 152 | 0.6602 | 0.4409 | 0.6602 |
No log | 9.0588 | 154 | 0.6525 | 0.4435 | 0.6525 |
No log | 9.1765 | 156 | 0.6577 | 0.4435 | 0.6577 |
No log | 9.2941 | 158 | 0.6779 | 0.4325 | 0.6779 |
No log | 9.4118 | 160 | 0.7177 | 0.4166 | 0.7177 |
No log | 9.5294 | 162 | 0.7502 | 0.4106 | 0.7502 |
No log | 9.6471 | 164 | 0.7522 | 0.4057 | 0.7522 |
No log | 9.7647 | 166 | 0.7503 | 0.4106 | 0.7503 |
No log | 9.8824 | 168 | 0.7475 | 0.4150 | 0.7475 |
No log | 10.0 | 170 | 0.7438 | 0.4143 | 0.7438 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for salbatarni/arabert_cross_organization_task4_fold1
Base model
aubmindlab/bert-base-arabertv02