arabert_cross_organization_task3_fold6

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6744
  • Qwk: 0.5374
  • Mse: 0.6727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 2.0484 0.0727 2.0464
No log 0.2353 4 1.0229 0.2634 1.0209
No log 0.3529 6 1.0565 0.3738 1.0563
No log 0.4706 8 0.8346 0.5570 0.8340
No log 0.5882 10 0.7369 0.3583 0.7363
No log 0.7059 12 0.6299 0.3918 0.6296
No log 0.8235 14 0.5123 0.5734 0.5122
No log 0.9412 16 0.4760 0.6338 0.4759
No log 1.0588 18 0.4963 0.5827 0.4956
No log 1.1765 20 0.5522 0.5578 0.5507
No log 1.2941 22 0.5052 0.6935 0.5043
No log 1.4118 24 0.4977 0.6903 0.4967
No log 1.5294 26 0.5405 0.5739 0.5389
No log 1.6471 28 0.5155 0.5351 0.5142
No log 1.7647 30 0.4597 0.6960 0.4592
No log 1.8824 32 0.5096 0.7559 0.5095
No log 2.0 34 0.4755 0.7285 0.4750
No log 2.1176 36 0.4913 0.5583 0.4902
No log 2.2353 38 0.5379 0.5453 0.5365
No log 2.3529 40 0.4972 0.5887 0.4960
No log 2.4706 42 0.4876 0.6288 0.4866
No log 2.5882 44 0.4834 0.6174 0.4824
No log 2.7059 46 0.4806 0.6244 0.4797
No log 2.8235 48 0.5129 0.5775 0.5117
No log 2.9412 50 0.5356 0.5568 0.5343
No log 3.0588 52 0.5206 0.5719 0.5195
No log 3.1765 54 0.4824 0.6328 0.4817
No log 3.2941 56 0.4890 0.6817 0.4886
No log 3.4118 58 0.4872 0.6139 0.4865
No log 3.5294 60 0.5427 0.5620 0.5416
No log 3.6471 62 0.5604 0.5617 0.5591
No log 3.7647 64 0.5186 0.5723 0.5175
No log 3.8824 66 0.5145 0.5822 0.5135
No log 4.0 68 0.5162 0.5904 0.5152
No log 4.1176 70 0.5201 0.5923 0.5191
No log 4.2353 72 0.5476 0.5839 0.5464
No log 4.3529 74 0.5528 0.5930 0.5517
No log 4.4706 76 0.5558 0.5946 0.5547
No log 4.5882 78 0.5638 0.5843 0.5626
No log 4.7059 80 0.5691 0.5607 0.5679
No log 4.8235 82 0.6117 0.5231 0.6104
No log 4.9412 84 0.5964 0.5445 0.5952
No log 5.0588 86 0.5870 0.5441 0.5858
No log 5.1765 88 0.5544 0.5918 0.5534
No log 5.2941 90 0.5807 0.5683 0.5796
No log 5.4118 92 0.6445 0.5409 0.6429
No log 5.5294 94 0.6914 0.5268 0.6896
No log 5.6471 96 0.6566 0.5829 0.6550
No log 5.7647 98 0.6232 0.5841 0.6218
No log 5.8824 100 0.6460 0.5480 0.6445
No log 6.0 102 0.7138 0.5185 0.7121
No log 6.1176 104 0.7136 0.4997 0.7120
No log 6.2353 106 0.6311 0.5377 0.6297
No log 6.3529 108 0.5676 0.5748 0.5666
No log 6.4706 110 0.5579 0.5804 0.5571
No log 6.5882 112 0.5941 0.5534 0.5929
No log 6.7059 114 0.6495 0.5405 0.6479
No log 6.8235 116 0.6811 0.5303 0.6793
No log 6.9412 118 0.6469 0.5504 0.6453
No log 7.0588 120 0.6031 0.5779 0.6018
No log 7.1765 122 0.6073 0.5800 0.6059
No log 7.2941 124 0.6215 0.5636 0.6200
No log 7.4118 126 0.6881 0.5394 0.6862
No log 7.5294 128 0.7415 0.5163 0.7395
No log 7.6471 130 0.7372 0.5194 0.7352
No log 7.7647 132 0.6878 0.5221 0.6860
No log 7.8824 134 0.6484 0.5397 0.6467
No log 8.0 136 0.6265 0.5443 0.6250
No log 8.1176 138 0.6341 0.5416 0.6325
No log 8.2353 140 0.6558 0.5401 0.6541
No log 8.3529 142 0.6638 0.5263 0.6621
No log 8.4706 144 0.6606 0.5378 0.6589
No log 8.5882 146 0.6408 0.5416 0.6392
No log 8.7059 148 0.6283 0.5514 0.6267
No log 8.8235 150 0.6390 0.5462 0.6374
No log 8.9412 152 0.6538 0.5432 0.6522
No log 9.0588 154 0.6607 0.5432 0.6590
No log 9.1765 156 0.6707 0.5374 0.6690
No log 9.2941 158 0.6864 0.5207 0.6846
No log 9.4118 160 0.6949 0.5207 0.6931
No log 9.5294 162 0.6950 0.5207 0.6932
No log 9.6471 164 0.6884 0.5221 0.6866
No log 9.7647 166 0.6794 0.5336 0.6777
No log 9.8824 168 0.6756 0.5374 0.6739
No log 10.0 170 0.6744 0.5374 0.6727

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for salbatarni/arabert_cross_organization_task3_fold6

Finetuned
(4222)
this model