arabert_cross_organization_task3_fold4

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4384
  • Qwk: 0.7923
  • Mse: 0.4384

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 2.0659 0.1309 2.0659
No log 0.2353 4 1.1312 0.2513 1.1312
No log 0.3529 6 1.2762 0.3076 1.2762
No log 0.4706 8 0.9742 0.3913 0.9742
No log 0.5882 10 0.8094 0.3950 0.8094
No log 0.7059 12 0.6869 0.4798 0.6869
No log 0.8235 14 0.5774 0.5954 0.5774
No log 0.9412 16 0.6003 0.7210 0.6003
No log 1.0588 18 0.5323 0.7387 0.5323
No log 1.1765 20 0.4319 0.7027 0.4319
No log 1.2941 22 0.4200 0.7041 0.4200
No log 1.4118 24 0.4896 0.7702 0.4896
No log 1.5294 26 0.4854 0.7637 0.4854
No log 1.6471 28 0.4346 0.7311 0.4346
No log 1.7647 30 0.4283 0.7225 0.4283
No log 1.8824 32 0.4469 0.6962 0.4469
No log 2.0 34 0.4554 0.7521 0.4554
No log 2.1176 36 0.6141 0.7808 0.6141
No log 2.2353 38 0.5954 0.7714 0.5954
No log 2.3529 40 0.4972 0.7836 0.4972
No log 2.4706 42 0.3941 0.7529 0.3941
No log 2.5882 44 0.3651 0.7446 0.3651
No log 2.7059 46 0.3529 0.7605 0.3529
No log 2.8235 48 0.3699 0.7870 0.3699
No log 2.9412 50 0.4844 0.8194 0.4844
No log 3.0588 52 0.5294 0.8187 0.5294
No log 3.1765 54 0.4291 0.8009 0.4291
No log 3.2941 56 0.3600 0.7917 0.3600
No log 3.4118 58 0.3588 0.7841 0.3588
No log 3.5294 60 0.4067 0.7876 0.4067
No log 3.6471 62 0.5014 0.8211 0.5014
No log 3.7647 64 0.4957 0.8087 0.4957
No log 3.8824 66 0.3997 0.7705 0.3997
No log 4.0 68 0.3670 0.7411 0.3670
No log 4.1176 70 0.3666 0.7485 0.3666
No log 4.2353 72 0.4185 0.7811 0.4185
No log 4.3529 74 0.5672 0.8114 0.5672
No log 4.4706 76 0.6146 0.7985 0.6146
No log 4.5882 78 0.5087 0.7803 0.5087
No log 4.7059 80 0.4307 0.7841 0.4307
No log 4.8235 82 0.4210 0.7338 0.4210
No log 4.9412 84 0.4161 0.7329 0.4161
No log 5.0588 86 0.4113 0.7754 0.4113
No log 5.1765 88 0.4423 0.8003 0.4423
No log 5.2941 90 0.4908 0.8117 0.4908
No log 5.4118 92 0.4559 0.8009 0.4559
No log 5.5294 94 0.4337 0.7982 0.4337
No log 5.6471 96 0.4283 0.8001 0.4283
No log 5.7647 98 0.4085 0.7829 0.4085
No log 5.8824 100 0.4060 0.7781 0.4060
No log 6.0 102 0.4389 0.7865 0.4389
No log 6.1176 104 0.4913 0.7924 0.4913
No log 6.2353 106 0.4747 0.7811 0.4747
No log 6.3529 108 0.4248 0.7908 0.4248
No log 6.4706 110 0.3799 0.7679 0.3799
No log 6.5882 112 0.3690 0.7547 0.3690
No log 6.7059 114 0.3767 0.7741 0.3767
No log 6.8235 116 0.4030 0.7842 0.4030
No log 6.9412 118 0.4559 0.8101 0.4559
No log 7.0588 120 0.4943 0.8129 0.4943
No log 7.1765 122 0.4753 0.8154 0.4753
No log 7.2941 124 0.4148 0.8032 0.4148
No log 7.4118 126 0.3867 0.7623 0.3867
No log 7.5294 128 0.3894 0.7606 0.3894
No log 7.6471 130 0.4128 0.7745 0.4128
No log 7.7647 132 0.4714 0.7941 0.4714
No log 7.8824 134 0.5145 0.8135 0.5145
No log 8.0 136 0.5184 0.8135 0.5184
No log 8.1176 138 0.4920 0.8112 0.4920
No log 8.2353 140 0.4462 0.8017 0.4462
No log 8.3529 142 0.4059 0.7727 0.4059
No log 8.4706 144 0.3943 0.7707 0.3943
No log 8.5882 146 0.3955 0.7715 0.3955
No log 8.7059 148 0.4024 0.7702 0.4024
No log 8.8235 150 0.4170 0.7875 0.4170
No log 8.9412 152 0.4406 0.7995 0.4406
No log 9.0588 154 0.4635 0.7980 0.4635
No log 9.1765 156 0.4777 0.8082 0.4777
No log 9.2941 158 0.4780 0.8082 0.4780
No log 9.4118 160 0.4663 0.7989 0.4663
No log 9.5294 162 0.4565 0.7957 0.4565
No log 9.6471 164 0.4496 0.7945 0.4496
No log 9.7647 166 0.4453 0.7965 0.4453
No log 9.8824 168 0.4404 0.7994 0.4404
No log 10.0 170 0.4384 0.7923 0.4384

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_organization_task3_fold4

Finetuned
(4204)
this model