arabert_cross_organization_task3_fold4
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4384
- Qwk: 0.7923
- Mse: 0.4384
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1176 | 2 | 2.0659 | 0.1309 | 2.0659 |
No log | 0.2353 | 4 | 1.1312 | 0.2513 | 1.1312 |
No log | 0.3529 | 6 | 1.2762 | 0.3076 | 1.2762 |
No log | 0.4706 | 8 | 0.9742 | 0.3913 | 0.9742 |
No log | 0.5882 | 10 | 0.8094 | 0.3950 | 0.8094 |
No log | 0.7059 | 12 | 0.6869 | 0.4798 | 0.6869 |
No log | 0.8235 | 14 | 0.5774 | 0.5954 | 0.5774 |
No log | 0.9412 | 16 | 0.6003 | 0.7210 | 0.6003 |
No log | 1.0588 | 18 | 0.5323 | 0.7387 | 0.5323 |
No log | 1.1765 | 20 | 0.4319 | 0.7027 | 0.4319 |
No log | 1.2941 | 22 | 0.4200 | 0.7041 | 0.4200 |
No log | 1.4118 | 24 | 0.4896 | 0.7702 | 0.4896 |
No log | 1.5294 | 26 | 0.4854 | 0.7637 | 0.4854 |
No log | 1.6471 | 28 | 0.4346 | 0.7311 | 0.4346 |
No log | 1.7647 | 30 | 0.4283 | 0.7225 | 0.4283 |
No log | 1.8824 | 32 | 0.4469 | 0.6962 | 0.4469 |
No log | 2.0 | 34 | 0.4554 | 0.7521 | 0.4554 |
No log | 2.1176 | 36 | 0.6141 | 0.7808 | 0.6141 |
No log | 2.2353 | 38 | 0.5954 | 0.7714 | 0.5954 |
No log | 2.3529 | 40 | 0.4972 | 0.7836 | 0.4972 |
No log | 2.4706 | 42 | 0.3941 | 0.7529 | 0.3941 |
No log | 2.5882 | 44 | 0.3651 | 0.7446 | 0.3651 |
No log | 2.7059 | 46 | 0.3529 | 0.7605 | 0.3529 |
No log | 2.8235 | 48 | 0.3699 | 0.7870 | 0.3699 |
No log | 2.9412 | 50 | 0.4844 | 0.8194 | 0.4844 |
No log | 3.0588 | 52 | 0.5294 | 0.8187 | 0.5294 |
No log | 3.1765 | 54 | 0.4291 | 0.8009 | 0.4291 |
No log | 3.2941 | 56 | 0.3600 | 0.7917 | 0.3600 |
No log | 3.4118 | 58 | 0.3588 | 0.7841 | 0.3588 |
No log | 3.5294 | 60 | 0.4067 | 0.7876 | 0.4067 |
No log | 3.6471 | 62 | 0.5014 | 0.8211 | 0.5014 |
No log | 3.7647 | 64 | 0.4957 | 0.8087 | 0.4957 |
No log | 3.8824 | 66 | 0.3997 | 0.7705 | 0.3997 |
No log | 4.0 | 68 | 0.3670 | 0.7411 | 0.3670 |
No log | 4.1176 | 70 | 0.3666 | 0.7485 | 0.3666 |
No log | 4.2353 | 72 | 0.4185 | 0.7811 | 0.4185 |
No log | 4.3529 | 74 | 0.5672 | 0.8114 | 0.5672 |
No log | 4.4706 | 76 | 0.6146 | 0.7985 | 0.6146 |
No log | 4.5882 | 78 | 0.5087 | 0.7803 | 0.5087 |
No log | 4.7059 | 80 | 0.4307 | 0.7841 | 0.4307 |
No log | 4.8235 | 82 | 0.4210 | 0.7338 | 0.4210 |
No log | 4.9412 | 84 | 0.4161 | 0.7329 | 0.4161 |
No log | 5.0588 | 86 | 0.4113 | 0.7754 | 0.4113 |
No log | 5.1765 | 88 | 0.4423 | 0.8003 | 0.4423 |
No log | 5.2941 | 90 | 0.4908 | 0.8117 | 0.4908 |
No log | 5.4118 | 92 | 0.4559 | 0.8009 | 0.4559 |
No log | 5.5294 | 94 | 0.4337 | 0.7982 | 0.4337 |
No log | 5.6471 | 96 | 0.4283 | 0.8001 | 0.4283 |
No log | 5.7647 | 98 | 0.4085 | 0.7829 | 0.4085 |
No log | 5.8824 | 100 | 0.4060 | 0.7781 | 0.4060 |
No log | 6.0 | 102 | 0.4389 | 0.7865 | 0.4389 |
No log | 6.1176 | 104 | 0.4913 | 0.7924 | 0.4913 |
No log | 6.2353 | 106 | 0.4747 | 0.7811 | 0.4747 |
No log | 6.3529 | 108 | 0.4248 | 0.7908 | 0.4248 |
No log | 6.4706 | 110 | 0.3799 | 0.7679 | 0.3799 |
No log | 6.5882 | 112 | 0.3690 | 0.7547 | 0.3690 |
No log | 6.7059 | 114 | 0.3767 | 0.7741 | 0.3767 |
No log | 6.8235 | 116 | 0.4030 | 0.7842 | 0.4030 |
No log | 6.9412 | 118 | 0.4559 | 0.8101 | 0.4559 |
No log | 7.0588 | 120 | 0.4943 | 0.8129 | 0.4943 |
No log | 7.1765 | 122 | 0.4753 | 0.8154 | 0.4753 |
No log | 7.2941 | 124 | 0.4148 | 0.8032 | 0.4148 |
No log | 7.4118 | 126 | 0.3867 | 0.7623 | 0.3867 |
No log | 7.5294 | 128 | 0.3894 | 0.7606 | 0.3894 |
No log | 7.6471 | 130 | 0.4128 | 0.7745 | 0.4128 |
No log | 7.7647 | 132 | 0.4714 | 0.7941 | 0.4714 |
No log | 7.8824 | 134 | 0.5145 | 0.8135 | 0.5145 |
No log | 8.0 | 136 | 0.5184 | 0.8135 | 0.5184 |
No log | 8.1176 | 138 | 0.4920 | 0.8112 | 0.4920 |
No log | 8.2353 | 140 | 0.4462 | 0.8017 | 0.4462 |
No log | 8.3529 | 142 | 0.4059 | 0.7727 | 0.4059 |
No log | 8.4706 | 144 | 0.3943 | 0.7707 | 0.3943 |
No log | 8.5882 | 146 | 0.3955 | 0.7715 | 0.3955 |
No log | 8.7059 | 148 | 0.4024 | 0.7702 | 0.4024 |
No log | 8.8235 | 150 | 0.4170 | 0.7875 | 0.4170 |
No log | 8.9412 | 152 | 0.4406 | 0.7995 | 0.4406 |
No log | 9.0588 | 154 | 0.4635 | 0.7980 | 0.4635 |
No log | 9.1765 | 156 | 0.4777 | 0.8082 | 0.4777 |
No log | 9.2941 | 158 | 0.4780 | 0.8082 | 0.4780 |
No log | 9.4118 | 160 | 0.4663 | 0.7989 | 0.4663 |
No log | 9.5294 | 162 | 0.4565 | 0.7957 | 0.4565 |
No log | 9.6471 | 164 | 0.4496 | 0.7945 | 0.4496 |
No log | 9.7647 | 166 | 0.4453 | 0.7965 | 0.4453 |
No log | 9.8824 | 168 | 0.4404 | 0.7994 | 0.4404 |
No log | 10.0 | 170 | 0.4384 | 0.7923 | 0.4384 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for salbatarni/arabert_cross_organization_task3_fold4
Base model
aubmindlab/bert-base-arabertv02