arabert_cross_organization_task2_fold6
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8091
- Qwk: 0.4688
- Mse: 0.8081
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 2.7795 | 0.0105 | 2.7827 |
No log | 0.25 | 4 | 1.5291 | 0.1173 | 1.5287 |
No log | 0.375 | 6 | 0.8451 | 0.3969 | 0.8442 |
No log | 0.5 | 8 | 0.7864 | 0.4495 | 0.7852 |
No log | 0.625 | 10 | 0.6936 | 0.4833 | 0.6924 |
No log | 0.75 | 12 | 1.1360 | 0.3318 | 1.1343 |
No log | 0.875 | 14 | 1.0124 | 0.3651 | 1.0104 |
No log | 1.0 | 16 | 0.6020 | 0.5728 | 0.6007 |
No log | 1.125 | 18 | 0.7313 | 0.4817 | 0.7294 |
No log | 1.25 | 20 | 0.6700 | 0.4955 | 0.6684 |
No log | 1.375 | 22 | 0.4911 | 0.6467 | 0.4906 |
No log | 1.5 | 24 | 0.4996 | 0.7310 | 0.4995 |
No log | 1.625 | 26 | 0.4835 | 0.5735 | 0.4828 |
No log | 1.75 | 28 | 0.6109 | 0.4913 | 0.6097 |
No log | 1.875 | 30 | 0.5349 | 0.5702 | 0.5337 |
No log | 2.0 | 32 | 0.5033 | 0.6710 | 0.5027 |
No log | 2.125 | 34 | 0.5412 | 0.6126 | 0.5400 |
No log | 2.25 | 36 | 0.7223 | 0.4624 | 0.7201 |
No log | 2.375 | 38 | 0.7359 | 0.4653 | 0.7337 |
No log | 2.5 | 40 | 0.5466 | 0.5891 | 0.5455 |
No log | 2.625 | 42 | 0.5036 | 0.7135 | 0.5034 |
No log | 2.75 | 44 | 0.4797 | 0.6820 | 0.4794 |
No log | 2.875 | 46 | 0.5194 | 0.5891 | 0.5185 |
No log | 3.0 | 48 | 0.5890 | 0.5385 | 0.5878 |
No log | 3.125 | 50 | 0.5541 | 0.5617 | 0.5529 |
No log | 3.25 | 52 | 0.5096 | 0.6247 | 0.5088 |
No log | 3.375 | 54 | 0.5168 | 0.6305 | 0.5160 |
No log | 3.5 | 56 | 0.5860 | 0.5436 | 0.5848 |
No log | 3.625 | 58 | 0.7175 | 0.4990 | 0.7160 |
No log | 3.75 | 60 | 0.6365 | 0.5253 | 0.6352 |
No log | 3.875 | 62 | 0.5233 | 0.6176 | 0.5225 |
No log | 4.0 | 64 | 0.5179 | 0.6032 | 0.5171 |
No log | 4.125 | 66 | 0.5802 | 0.5490 | 0.5792 |
No log | 4.25 | 68 | 0.6555 | 0.5187 | 0.6543 |
No log | 4.375 | 70 | 0.6681 | 0.5214 | 0.6669 |
No log | 4.5 | 72 | 0.5977 | 0.5522 | 0.5967 |
No log | 4.625 | 74 | 0.6327 | 0.5265 | 0.6317 |
No log | 4.75 | 76 | 0.7255 | 0.4790 | 0.7244 |
No log | 4.875 | 78 | 0.6478 | 0.5237 | 0.6469 |
No log | 5.0 | 80 | 0.6738 | 0.4846 | 0.6728 |
No log | 5.125 | 82 | 0.7006 | 0.4808 | 0.6996 |
No log | 5.25 | 84 | 0.6997 | 0.4980 | 0.6987 |
No log | 5.375 | 86 | 0.7244 | 0.5042 | 0.7234 |
No log | 5.5 | 88 | 0.8734 | 0.4504 | 0.8720 |
No log | 5.625 | 90 | 0.9975 | 0.3988 | 0.9959 |
No log | 5.75 | 92 | 0.8921 | 0.4437 | 0.8908 |
No log | 5.875 | 94 | 0.6714 | 0.5075 | 0.6707 |
No log | 6.0 | 96 | 0.6012 | 0.5740 | 0.6007 |
No log | 6.125 | 98 | 0.6310 | 0.5373 | 0.6304 |
No log | 6.25 | 100 | 0.7371 | 0.4660 | 0.7361 |
No log | 6.375 | 102 | 0.7404 | 0.4660 | 0.7394 |
No log | 6.5 | 104 | 0.6821 | 0.5187 | 0.6812 |
No log | 6.625 | 106 | 0.7033 | 0.5011 | 0.7023 |
No log | 6.75 | 108 | 0.8055 | 0.4525 | 0.8043 |
No log | 6.875 | 110 | 0.9021 | 0.4325 | 0.9007 |
No log | 7.0 | 112 | 0.8396 | 0.4487 | 0.8384 |
No log | 7.125 | 114 | 0.7100 | 0.5011 | 0.7090 |
No log | 7.25 | 116 | 0.6902 | 0.5001 | 0.6894 |
No log | 7.375 | 118 | 0.7441 | 0.4773 | 0.7431 |
No log | 7.5 | 120 | 0.8389 | 0.4453 | 0.8379 |
No log | 7.625 | 122 | 0.8787 | 0.4279 | 0.8776 |
No log | 7.75 | 124 | 0.8597 | 0.4412 | 0.8587 |
No log | 7.875 | 126 | 0.7923 | 0.4723 | 0.7914 |
No log | 8.0 | 128 | 0.7502 | 0.4956 | 0.7493 |
No log | 8.125 | 130 | 0.7529 | 0.4956 | 0.7521 |
No log | 8.25 | 132 | 0.8227 | 0.4737 | 0.8217 |
No log | 8.375 | 134 | 0.9122 | 0.4331 | 0.9110 |
No log | 8.5 | 136 | 0.9081 | 0.4331 | 0.9069 |
No log | 8.625 | 138 | 0.8495 | 0.4547 | 0.8484 |
No log | 8.75 | 140 | 0.8359 | 0.4581 | 0.8348 |
No log | 8.875 | 142 | 0.8222 | 0.4649 | 0.8211 |
No log | 9.0 | 144 | 0.8247 | 0.4649 | 0.8237 |
No log | 9.125 | 146 | 0.8487 | 0.4615 | 0.8476 |
No log | 9.25 | 148 | 0.8495 | 0.4581 | 0.8485 |
No log | 9.375 | 150 | 0.8322 | 0.4649 | 0.8311 |
No log | 9.5 | 152 | 0.8155 | 0.4688 | 0.8145 |
No log | 9.625 | 154 | 0.7982 | 0.4774 | 0.7972 |
No log | 9.75 | 156 | 0.7978 | 0.4774 | 0.7968 |
No log | 9.875 | 158 | 0.8054 | 0.4774 | 0.8044 |
No log | 10.0 | 160 | 0.8091 | 0.4688 | 0.8081 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for salbatarni/arabert_cross_organization_task2_fold6
Base model
aubmindlab/bert-base-arabertv02