arabert_cross_organization_task2_fold2

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0548
  • Qwk: 0.1458
  • Mse: 1.0548

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 4.4485 -0.0131 4.4485
No log 0.2353 4 1.8009 -0.0153 1.8009
No log 0.3529 6 1.1944 0.0437 1.1944
No log 0.4706 8 1.2459 -0.0439 1.2459
No log 0.5882 10 1.1688 -0.0450 1.1688
No log 0.7059 12 1.1521 0.0379 1.1521
No log 0.8235 14 1.1603 -0.0096 1.1603
No log 0.9412 16 1.1948 -0.0723 1.1948
No log 1.0588 18 1.3189 -0.0617 1.3189
No log 1.1765 20 1.4608 -0.0017 1.4608
No log 1.2941 22 1.2409 -0.0661 1.2409
No log 1.4118 24 1.1260 0.0513 1.1260
No log 1.5294 26 1.1582 0.0639 1.1582
No log 1.6471 28 1.1974 -0.0637 1.1974
No log 1.7647 30 1.2427 -0.0072 1.2427
No log 1.8824 32 1.2670 -0.0237 1.2670
No log 2.0 34 1.2862 -0.0775 1.2862
No log 2.1176 36 1.2811 -0.0301 1.2811
No log 2.2353 38 1.2493 0.0198 1.2493
No log 2.3529 40 1.3023 -0.0524 1.3023
No log 2.4706 42 1.1620 0.0963 1.1620
No log 2.5882 44 1.2006 0.0203 1.2006
No log 2.7059 46 1.1721 -0.0203 1.1721
No log 2.8235 48 1.1251 0.0909 1.1251
No log 2.9412 50 1.1646 0.0614 1.1646
No log 3.0588 52 1.1537 0.1100 1.1537
No log 3.1765 54 1.1619 0.0397 1.1619
No log 3.2941 56 1.1446 0.0356 1.1446
No log 3.4118 58 1.1100 0.1366 1.1100
No log 3.5294 60 1.0950 0.0927 1.0950
No log 3.6471 62 1.1914 0.0668 1.1914
No log 3.7647 64 1.1642 0.0734 1.1642
No log 3.8824 66 1.0702 0.1452 1.0702
No log 4.0 68 1.0704 0.1474 1.0704
No log 4.1176 70 1.1170 0.0391 1.1170
No log 4.2353 72 1.1800 0.0595 1.1800
No log 4.3529 74 1.0993 0.1283 1.0993
No log 4.4706 76 1.1934 -0.0135 1.1934
No log 4.5882 78 1.3754 -0.0259 1.3754
No log 4.7059 80 1.2204 -0.0135 1.2204
No log 4.8235 82 1.1114 0.1016 1.1114
No log 4.9412 84 1.3701 0.0289 1.3701
No log 5.0588 86 1.3316 0.0728 1.3316
No log 5.1765 88 1.0952 0.1185 1.0952
No log 5.2941 90 1.1314 0.0453 1.1314
No log 5.4118 92 1.2064 -0.0035 1.2064
No log 5.5294 94 1.1624 0.0524 1.1624
No log 5.6471 96 1.0616 0.1805 1.0616
No log 5.7647 98 1.0707 0.1579 1.0707
No log 5.8824 100 1.0682 0.1543 1.0682
No log 6.0 102 1.0755 0.1611 1.0755
No log 6.1176 104 1.1047 0.1146 1.1047
No log 6.2353 106 1.0839 0.1630 1.0839
No log 6.3529 108 1.1070 0.1144 1.1070
No log 6.4706 110 1.1227 0.1144 1.1227
No log 6.5882 112 1.1078 0.1050 1.1078
No log 6.7059 114 1.1016 0.1871 1.1016
No log 6.8235 116 1.0973 0.1835 1.0973
No log 6.9412 118 1.0879 0.1622 1.0879
No log 7.0588 120 1.1030 0.1077 1.1030
No log 7.1765 122 1.0923 0.1497 1.0923
No log 7.2941 124 1.0894 0.1520 1.0894
No log 7.4118 126 1.0755 0.1253 1.0755
No log 7.5294 128 1.0677 0.1253 1.0677
No log 7.6471 130 1.0610 0.1520 1.0610
No log 7.7647 132 1.1106 0.0794 1.1106
No log 7.8824 134 1.0932 0.0888 1.0932
No log 8.0 136 1.0392 0.1335 1.0392
No log 8.1176 138 1.0756 0.1295 1.0756
No log 8.2353 140 1.1032 0.1371 1.1032
No log 8.3529 142 1.0707 0.1344 1.0707
No log 8.4706 144 1.0399 0.1754 1.0399
No log 8.5882 146 1.0486 0.1205 1.0486
No log 8.7059 148 1.0606 0.1379 1.0606
No log 8.8235 150 1.0717 0.1241 1.0717
No log 8.9412 152 1.0674 0.1379 1.0674
No log 9.0588 154 1.0527 0.1066 1.0527
No log 9.1765 156 1.0449 0.1458 1.0449
No log 9.2941 158 1.0540 0.1907 1.0540
No log 9.4118 160 1.0626 0.1548 1.0626
No log 9.5294 162 1.0605 0.1577 1.0605
No log 9.6471 164 1.0583 0.1605 1.0583
No log 9.7647 166 1.0560 0.1458 1.0560
No log 9.8824 168 1.0549 0.1458 1.0549
No log 10.0 170 1.0548 0.1458 1.0548

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_organization_task2_fold2

Finetuned
(4204)
this model