salbatarni's picture
End of training
6b8b58c verified
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_baseline_style_task7_fold1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_baseline_style_task7_fold1
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co./aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3701
- Qwk: 0.7283
- Mse: 0.3603
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| No log | 0.3333 | 2 | 0.7720 | 0.3388 | 0.7758 |
| No log | 0.6667 | 4 | 0.5488 | 0.6361 | 0.5756 |
| No log | 1.0 | 6 | 0.6199 | 0.6083 | 0.6502 |
| No log | 1.3333 | 8 | 0.5891 | 0.3780 | 0.5962 |
| No log | 1.6667 | 10 | 0.5013 | 0.5556 | 0.5111 |
| No log | 2.0 | 12 | 0.4841 | 0.7640 | 0.4991 |
| No log | 2.3333 | 14 | 0.4386 | 0.784 | 0.4514 |
| No log | 2.6667 | 16 | 0.4343 | 0.6667 | 0.4393 |
| No log | 3.0 | 18 | 0.4876 | 0.6206 | 0.4868 |
| No log | 3.3333 | 20 | 0.4572 | 0.6294 | 0.4528 |
| No log | 3.6667 | 22 | 0.3651 | 0.6769 | 0.3604 |
| No log | 4.0 | 24 | 0.3743 | 0.6434 | 0.3662 |
| No log | 4.3333 | 26 | 0.4705 | 0.6261 | 0.4557 |
| No log | 4.6667 | 28 | 0.5940 | 0.5033 | 0.5754 |
| No log | 5.0 | 30 | 0.5564 | 0.5650 | 0.5374 |
| No log | 5.3333 | 32 | 0.4207 | 0.6607 | 0.4059 |
| No log | 5.6667 | 34 | 0.3696 | 0.6637 | 0.3577 |
| No log | 6.0 | 36 | 0.3816 | 0.6607 | 0.3687 |
| No log | 6.3333 | 38 | 0.4231 | 0.6261 | 0.4080 |
| No log | 6.6667 | 40 | 0.4191 | 0.6261 | 0.4044 |
| No log | 7.0 | 42 | 0.4158 | 0.6261 | 0.4016 |
| No log | 7.3333 | 44 | 0.4009 | 0.6261 | 0.3875 |
| No log | 7.6667 | 46 | 0.3811 | 0.6474 | 0.3694 |
| No log | 8.0 | 48 | 0.3746 | 0.6810 | 0.3639 |
| No log | 8.3333 | 50 | 0.3601 | 0.7283 | 0.3514 |
| No log | 8.6667 | 52 | 0.3557 | 0.7283 | 0.3474 |
| No log | 9.0 | 54 | 0.3591 | 0.7283 | 0.3506 |
| No log | 9.3333 | 56 | 0.3648 | 0.7283 | 0.3558 |
| No log | 9.6667 | 58 | 0.3690 | 0.7283 | 0.3593 |
| No log | 10.0 | 60 | 0.3701 | 0.7283 | 0.3603 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1