fine-tune-wav2vec2-large-xls-r-300m-ssw_224s

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the ml-superb-subset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8167
  • Wer: 0.5492

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.4669 2.0997 400 3.1603 1.0
2.5291 4.1995 800 1.2456 0.9651
0.8905 6.2992 1200 0.7689 0.7746
0.5222 8.3990 1600 0.7821 0.7048
0.3768 10.4987 2000 0.7637 0.7238
0.2874 12.5984 2400 0.7030 0.6063
0.2216 14.6982 2800 0.8468 0.6571
0.1954 16.7979 3200 0.7099 0.5841
0.1649 18.8976 3600 0.7696 0.5651
0.1384 20.9974 4000 0.8328 0.5873
0.1208 23.0971 4400 0.7899 0.5651
0.1054 25.1969 4800 0.8310 0.5714
0.095 27.2966 5200 0.8183 0.5302
0.0835 29.3963 5600 0.8167 0.5492

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sajidof/fine-tune-wav2vec2-large-xls-r-300m-ssw_224s

Finetuned
(542)
this model

Evaluation results