Edit model card

vit-base-beans-demo-v5

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3663
  • Accuracy: 0.4856

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.4389 0.1894 100 2.5163 0.4748
2.1742 0.3788 200 2.4580 0.4802
2.1934 0.5682 300 2.4167 0.4836
2.4634 0.7576 400 2.4232 0.4789
2.5892 0.9470 500 2.4008 0.4829
2.3142 1.1364 600 2.3910 0.4849
2.6178 1.3258 700 2.3910 0.4849
2.5871 1.5152 800 2.3954 0.4856
2.5426 1.7045 900 2.3848 0.4856
2.077 1.8939 1000 2.3795 0.4849
2.3489 2.0833 1100 2.3777 0.4849
2.6511 2.2727 1200 2.3717 0.4856
2.4127 2.4621 1300 2.3727 0.4856
2.4054 2.6515 1400 2.3753 0.4849
2.628 2.8409 1500 2.3736 0.4856
2.5406 3.0303 1600 2.3688 0.4856
2.4249 3.2197 1700 2.3726 0.4856
2.3137 3.4091 1800 2.3719 0.4856
2.4248 3.5985 1900 2.3667 0.4856
2.0676 3.7879 2000 2.3666 0.4856
2.2021 3.9773 2100 2.3663 0.4856

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
85.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sai17/vit-base-beans-demo-v5

Finetuned
(1668)
this model