sai17's picture
Model save
af4a602 verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: cards-top_left_swin-tiny-patch4-window7-224-finetuned-dough
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5874543393374481

cards-top_left_swin-tiny-patch4-window7-224-finetuned-dough

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9991
  • Accuracy: 0.5875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5983 1.0 1240 1.3399 0.4436
1.5587 2.0 2481 1.3298 0.4366
1.4955 3.0 3721 1.1679 0.5129
1.4884 4.0 4962 1.1331 0.5299
1.4413 5.0 6202 1.1286 0.5287
1.4395 6.0 7443 1.1316 0.5226
1.4497 7.0 8683 1.2127 0.4844
1.3988 8.0 9924 1.1119 0.5301
1.4457 9.0 11164 1.0984 0.5389
1.4153 10.0 12405 1.1226 0.5269
1.3962 11.0 13645 1.0610 0.5573
1.3911 12.0 14886 1.0540 0.5595
1.3617 13.0 16126 1.0646 0.5530
1.3766 14.0 17367 1.0722 0.5532
1.3693 15.0 18607 1.0243 0.5721
1.3624 16.0 19848 1.0212 0.5763
1.3638 17.0 21088 1.0667 0.5580
1.4007 18.0 22329 1.0314 0.5730
1.3415 19.0 23569 1.0191 0.5755
1.3802 20.0 24810 1.0142 0.5770
1.3572 21.0 26050 1.0125 0.5771
1.2962 22.0 27291 1.0167 0.5763
1.2831 23.0 28531 1.0043 0.5829
1.3272 24.0 29772 0.9990 0.5858
1.3197 25.0 31012 1.0033 0.5830
1.3203 26.0 32253 1.0075 0.5818
1.3172 27.0 33493 1.0008 0.5852
1.3197 28.0 34734 1.0016 0.5847
1.2879 29.0 35974 1.0017 0.5867
1.2907 29.99 37200 0.9991 0.5875

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.17.0
  • Tokenizers 0.15.2