sahil-everlign's picture
End of training
9a66d54 verified
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv2-base-uncased
tags:
- generated_from_trainer
model-index:
- name: layoutlmv2-base-uncased_finetuned_docvqa_on_1200
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-base-uncased_finetuned_docvqa_on_1200
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co./microsoft/layoutlmv2-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6669
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 5.26 | 0.2212 | 50 | 4.5357 |
| 4.3552 | 0.4425 | 100 | 4.0284 |
| 4.0237 | 0.6637 | 150 | 3.7961 |
| 3.7428 | 0.8850 | 200 | 3.5727 |
| 3.6213 | 1.1062 | 250 | 3.7866 |
| 3.2334 | 1.3274 | 300 | 3.1121 |
| 3.0382 | 1.5487 | 350 | 2.9537 |
| 2.8353 | 1.7699 | 400 | 2.8318 |
| 2.4759 | 1.9912 | 450 | 2.6736 |
| 1.9881 | 2.2124 | 500 | 3.0365 |
| 1.9279 | 2.4336 | 550 | 2.4144 |
| 1.9336 | 2.6549 | 600 | 2.1754 |
| 1.772 | 2.8761 | 650 | 2.1086 |
| 1.5504 | 3.0973 | 700 | 2.7056 |
| 1.4621 | 3.3186 | 750 | 2.8930 |
| 1.4227 | 3.5398 | 800 | 2.4620 |
| 1.3924 | 3.7611 | 850 | 2.1275 |
| 1.3063 | 3.9823 | 900 | 2.2443 |
| 1.0697 | 4.2035 | 950 | 2.6747 |
| 0.9476 | 4.4248 | 1000 | 2.7229 |
| 1.0868 | 4.6460 | 1050 | 2.9257 |
| 0.8726 | 4.8673 | 1100 | 2.7007 |
| 0.9436 | 5.0885 | 1150 | 2.8765 |
| 0.7219 | 5.3097 | 1200 | 2.5301 |
| 0.6919 | 5.5310 | 1250 | 2.9763 |
| 0.491 | 5.7522 | 1300 | 3.1198 |
| 0.5382 | 5.9735 | 1350 | 3.0883 |
| 0.462 | 6.1947 | 1400 | 3.2955 |
| 0.6533 | 6.4159 | 1450 | 3.3370 |
| 0.6477 | 6.6372 | 1500 | 3.3794 |
| 0.4849 | 6.8584 | 1550 | 3.3798 |
| 0.4881 | 7.0796 | 1600 | 3.2085 |
| 0.3952 | 7.3009 | 1650 | 3.2885 |
| 0.161 | 7.5221 | 1700 | 3.6201 |
| 0.6895 | 7.7434 | 1750 | 3.4253 |
| 0.4638 | 7.9646 | 1800 | 3.4787 |
| 0.2186 | 8.1858 | 1850 | 3.7668 |
| 0.2531 | 8.4071 | 1900 | 3.7723 |
| 0.3971 | 8.6283 | 1950 | 3.7131 |
| 0.5665 | 8.8496 | 2000 | 3.5627 |
| 0.3377 | 9.0708 | 2050 | 3.1885 |
| 0.208 | 9.2920 | 2100 | 3.3734 |
| 0.1775 | 9.5133 | 2150 | 4.0609 |
| 0.3295 | 9.7345 | 2200 | 3.7039 |
| 0.2627 | 9.9558 | 2250 | 3.6028 |
| 0.1988 | 10.1770 | 2300 | 3.6288 |
| 0.1772 | 10.3982 | 2350 | 3.5394 |
| 0.0719 | 10.6195 | 2400 | 4.2068 |
| 0.1629 | 10.8407 | 2450 | 4.2701 |
| 0.1921 | 11.0619 | 2500 | 4.0440 |
| 0.164 | 11.2832 | 2550 | 3.9099 |
| 0.1281 | 11.5044 | 2600 | 3.7753 |
| 0.0586 | 11.7257 | 2650 | 3.9491 |
| 0.1436 | 11.9469 | 2700 | 4.2734 |
| 0.0405 | 12.1681 | 2750 | 4.4347 |
| 0.0664 | 12.3894 | 2800 | 4.2338 |
| 0.0864 | 12.6106 | 2850 | 3.8694 |
| 0.103 | 12.8319 | 2900 | 3.9883 |
| 0.0456 | 13.0531 | 2950 | 4.5064 |
| 0.05 | 13.2743 | 3000 | 4.1434 |
| 0.0436 | 13.4956 | 3050 | 4.3928 |
| 0.0798 | 13.7168 | 3100 | 4.5576 |
| 0.0919 | 13.9381 | 3150 | 4.4114 |
| 0.0988 | 14.1593 | 3200 | 4.4998 |
| 0.0332 | 14.3805 | 3250 | 4.3948 |
| 0.0326 | 14.6018 | 3300 | 4.3823 |
| 0.0434 | 14.8230 | 3350 | 4.2468 |
| 0.0926 | 15.0442 | 3400 | 4.3909 |
| 0.027 | 15.2655 | 3450 | 4.5539 |
| 0.047 | 15.4867 | 3500 | 4.5799 |
| 0.0189 | 15.7080 | 3550 | 4.3943 |
| 0.0096 | 15.9292 | 3600 | 4.4218 |
| 0.0467 | 16.1504 | 3650 | 4.6181 |
| 0.0144 | 16.3717 | 3700 | 4.5609 |
| 0.0339 | 16.5929 | 3750 | 4.5994 |
| 0.074 | 16.8142 | 3800 | 4.5598 |
| 0.018 | 17.0354 | 3850 | 4.5528 |
| 0.0043 | 17.2566 | 3900 | 4.6133 |
| 0.0179 | 17.4779 | 3950 | 4.5414 |
| 0.039 | 17.6991 | 4000 | 4.4690 |
| 0.0134 | 17.9204 | 4050 | 4.4789 |
| 0.0094 | 18.1416 | 4100 | 4.5317 |
| 0.004 | 18.3628 | 4150 | 4.5711 |
| 0.0064 | 18.5841 | 4200 | 4.6237 |
| 0.0505 | 18.8053 | 4250 | 4.6148 |
| 0.0312 | 19.0265 | 4300 | 4.6302 |
| 0.0127 | 19.2478 | 4350 | 4.6577 |
| 0.0169 | 19.4690 | 4400 | 4.6685 |
| 0.0192 | 19.6903 | 4450 | 4.6626 |
| 0.0232 | 19.9115 | 4500 | 4.6669 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1