sagar213's picture
Training completed_v1!
b58a36b verified
---
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: bert-base-spanish-wwm-uncased-finetuned-political_elsalvadore
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-spanish-wwm-uncased-finetuned-political_elsalvadore
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co./dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3034
- Accuracy: 0.78
- F1: 0.7796
- Precision: 0.7794
- Recall: 0.78
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 66 | 0.6370 | 0.7156 | 0.7164 | 0.7237 | 0.7156 |
| 0.62 | 2.0 | 132 | 0.6332 | 0.7356 | 0.7342 | 0.7333 | 0.7356 |
| 0.62 | 3.0 | 198 | 0.7050 | 0.7356 | 0.7383 | 0.7488 | 0.7356 |
| 0.2306 | 4.0 | 264 | 0.8853 | 0.7356 | 0.7339 | 0.7330 | 0.7356 |
| 0.2306 | 5.0 | 330 | 1.0291 | 0.7244 | 0.7260 | 0.7300 | 0.7244 |
| 0.0704 | 6.0 | 396 | 1.1888 | 0.7333 | 0.7360 | 0.7416 | 0.7333 |
| 0.0704 | 7.0 | 462 | 1.3355 | 0.72 | 0.7245 | 0.7376 | 0.72 |
| 0.0225 | 8.0 | 528 | 1.3803 | 0.7444 | 0.7465 | 0.7500 | 0.7444 |
| 0.0225 | 9.0 | 594 | 1.4822 | 0.7267 | 0.7303 | 0.7415 | 0.7267 |
| 0.0108 | 10.0 | 660 | 1.4441 | 0.7333 | 0.7353 | 0.7386 | 0.7333 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1